Ma Buyong, Nussinov Ruth
Laboratory of Experimental and Computational Biology, and Intramural Research Support Program, Science Applications International Corporation, National Cancer Institute, Building 469, Room 151, Frederick, MD 21702, USA.
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14126-31. doi: 10.1073/pnas.212206899. Epub 2002 Oct 21.
Previously, we have studied the minimal oligomer size of an aggregate amyloid seed and the mechanism of seed growth with a multilayer beta-sheet model. Under high temperature simulation conditions, our approach can test the stability of possible amyloid forms. Here, we report our study of oligomers of Alzheimer's amyloid beta-peptide (Abeta) fragments 16-22, 16-35, and 10-35 (abbreviated Abeta(16-22), Abeta(16-35), and Abeta(10-35), respectively). Our simulations indicate that an antiparallel beta-sheet orientation is the most stable for the Abeta(16-22), in agreement with a solid state NMR-based model [Balbach, J. J., Ishii, Y., Antzutkin, O. N., Leapman, R. D., Rizzo, N. W., et al. (2000) Biochemistry 39, 13748-13759]. A model with twenty-four Abeta(16-22) strands indicates a highly twisted fibril. Whereas the short Abeta(16-22) and Abeta(24-36) may exist in fully extended form, the linear parallel beta-sheets for Abeta(16-35) appear impossible, mainly because of the polar region in the middle of the 16-35 sequence. However, a bent double-layered hairpin-like structure (called hook) with the polar region at the turn forms parallel beta-sheets with higher stability. An intra-strand salt-bridge (D23-K28) stabilizes the bent hairpin-like hook structure. The bent double-beta-sheet model for the Abeta(10-35) similarly offers oligomer stability.
此前,我们利用多层β-折叠模型研究了聚集淀粉样蛋白种子的最小寡聚体大小以及种子生长机制。在高温模拟条件下,我们的方法可以测试可能的淀粉样蛋白形式的稳定性。在此,我们报告了对阿尔茨海默病淀粉样β肽(Aβ)片段16 - 22、16 - 35和10 - 35(分别缩写为Aβ(16 - 22)、Aβ(16 - 35)和Aβ(10 - 35))寡聚体的研究。我们的模拟表明,反平行β-折叠取向对Aβ(16 - 22)来说是最稳定的,这与基于固态核磁共振的模型一致[巴尔巴赫,J. J.,石井,Y.,安祖特金,O. N.,利普曼,R. D.,里佐,N. W.,等人(2000年)《生物化学》39卷,13748 - 13759页]。一个含有24条Aβ(16 - 22)链的模型显示出高度扭曲的纤维。虽然短的Aβ(16 - 22)和Aβ(24 - 36)可能以完全伸展的形式存在,但Aβ(16 - 35)的线性平行β-折叠似乎是不可能的,主要是因为16 - 35序列中间的极性区域。然而,一种在转角处有极性区域的弯曲双层发夹样结构(称为钩状结构)形成了稳定性更高的平行β-折叠。链内盐桥(D23 - K28)稳定了弯曲的发夹样钩状结构。Aβ(10 - 35)的弯曲双β-折叠模型同样提供了寡聚体稳定性。