Repasky Matthew P, Chandrasekhar Jayaraman, Jorgensen William L
Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520-8107, USA.
J Comput Chem. 2002 Dec;23(16):1601-22. doi: 10.1002/jcc.10162.
Two new semiempirical methods employing a Pairwise Distance Directed Gaussian modification have been developed: PDDG/PM3 and PDDG/MNDO; they are easily implemented in existing software, and yield heats of formation for compounds containing C, H, N, and O atoms with significantly improved accuracy over the standard NDDO schemes, PM5, PM3, AM1, and MNDO. The PDDG/PM3 results for heats of formation also show substantial improvement over density functional theory with large basis sets. The PDDG modifications consist of a single function, which is added to the existing pairwise core repulsion functions within PM3 and MNDO, a reparameterized semiempirical parameter set, and modified computation of the energy of formation of a gaseous atom. The PDDG addition introduces functional group information via pairwise atomic interactions using only atom-based parameters. For 622 diverse molecules containing C, H, N, and O atoms, mean absolute errors in calculated heats of formation are reduced from 4.4 to 3.2 kcal/mol and from 8.4 to 5.2 kcal/mol using the PDDG modified versions of PM3 and MNDO over the standard versions, respectively. Several specific problems are overcome, including the relative stability of hydrocarbon isomers, and energetics of small rings and molecules containing multiple heteroatoms. The internal consistency of PDDG energies is also significantly improved, enabling more reliable analysis of isomerization energies and trends across series of molecules; PDDG isomerization energies show significant improvement over B3LYP/6-31G* results. Comparison of heats of formation, ionization potentials, dipole moments, isomer, and conformer energetics, intermolecular interaction energies, activation energies, and molecular geometries from the PDDG techniques is made to experimental data and values from other semiempirical and ab initio methods.
PDDG/PM3和PDDG/MNDO;它们可以很容易地在现有软件中实现,并且对于含有碳、氢、氮和氧原子的化合物,其生成热的计算精度比标准的NDDO方法(PM5、PM3、AM1和MNDO)有显著提高。PDDG/PM3生成热的结果与大基组密度泛函理论相比也有显著改进。PDDG修正包括一个单一函数,它被添加到PM3和MNDO现有的成对核心排斥函数中,一组重新参数化的半经验参数集,以及气态原子形成能的修正计算。PDDG的添加仅通过基于原子的参数,利用成对原子相互作用引入官能团信息。对于622种含有碳、氢、氮和氧原子的不同分子,使用PM3和MNDO的PDDG修正版本计算生成热的平均绝对误差分别从4.4千卡/摩尔降至3.2千卡/摩尔,从8.4千卡/摩尔降至5.2千卡/摩尔,相比标准版本。克服了几个特定问题,包括烃类异构体的相对稳定性以及小环和含有多个杂原子的分子的能量学问题。PDDG能量的内部一致性也显著提高,使得对异构化能和分子系列趋势的分析更加可靠;PDDG异构化能比B3LYP/6 - 31G*结果有显著改进。将PDDG技术计算的生成热、电离势、偶极矩、异构体和构象体能量、分子间相互作用能、活化能以及分子几何结构与实验数据以及其他半经验和从头算方法的值进行了比较。