Suppr超能文献

新生朊病毒蛋白在转位通道处共翻译分配到多个群体中。

Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel.

作者信息

Kim Soo Jung, Hegde Ramanujan S

机构信息

Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Mol Biol Cell. 2002 Nov;13(11):3775-86. doi: 10.1091/mbc.e02-05-0293.

Abstract

The decisive events that direct a single polypeptide such as the prion protein (PrP) to be synthesized at the endoplasmic reticulum in both fully translocated and transmembrane forms are poorly understood. In this study, we demonstrate that the topological heterogeneity of PrP is determined cotranslationally, while at the translocation channel. By evaluating sequential intermediates during PrP topogenesis, we find that signal sequence-mediated initiation of translocation results in an interaction between nascent PrP and endoplasmic reticulum chaperones, committing the N terminus to the lumen. Synthesis of the transmembrane domain before completion of this step allows it to direct the generation of (Ctm)PrP, a transmembrane form with its N terminus in the cytosol. Thus, segregation of nascent PrP into different topological configurations is critically dependent on the precise timing of signal-mediated initiation of N-terminus translocation. Consequently, this step could be experimentally tuned to modify PrP topogenesis, including complete reversal of the elevated (Ctm)PrP caused by disease-associated mutations in the transmembrane domain. These results delineate the sequence of events involved in PrP biogenesis, explain the mechanism of action of (Ctm)PrP-favoring mutations associated with neurodegenerative disease, and more generally, reveal that translocation substrates can be cotranslationally partitioned into multiple populations at the translocon.

摘要

指导单个多肽(如朊病毒蛋白(PrP))在内质网中以完全转运和跨膜形式合成的决定性事件目前仍知之甚少。在本研究中,我们证明PrP的拓扑异质性是在共翻译过程中,即在转运通道处决定的。通过评估PrP拓扑发生过程中的连续中间体,我们发现信号序列介导的转运起始导致新生PrP与内质网伴侣之间的相互作用,使N端进入内质网腔。在这一步完成之前合成跨膜结构域,使其能够指导产生(Ctm)PrP,一种N端位于胞质溶胶中的跨膜形式。因此,新生PrP分离成不同的拓扑结构关键取决于信号介导的N端转运起始的精确时间。因此,这一步骤可以通过实验进行调整,以改变PrP的拓扑发生,包括完全逆转由跨膜结构域中与疾病相关的突变引起的升高的(Ctm)PrP。这些结果描绘了PrP生物发生所涉及的事件序列,解释了与神经退行性疾病相关的有利于(Ctm)PrP的突变的作用机制,更普遍地揭示了转运底物可以在转运体处共翻译地分配到多个群体中。

相似文献

3
Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain.
J Biol Chem. 2001 Jul 13;276(28):26132-40. doi: 10.1074/jbc.M101638200. Epub 2001 May 18.
4
Prion protein contains a second endoplasmic reticulum targeting signal sequence located at its C terminus.
J Biol Chem. 2001 Apr 20;276(16):13388-94. doi: 10.1074/jbc.M007331200. Epub 2001 Jan 22.
5
Mammalian Prion protein expression in yeast; a model for transmembrane insertion.
Prion. 2013 Nov-Dec;7(6):477-87. doi: 10.4161/pri.26850. Epub 2013 Oct 18.
7
Cell-specific metabolism and pathogenesis of transmembrane prion protein.
Mol Cell Biol. 2006 Apr;26(7):2697-715. doi: 10.1128/MCB.26.7.2697-2715.2006.
10
A transmembrane form of the prion protein in neurodegenerative disease.
Science. 1998 Feb 6;279(5352):827-34. doi: 10.1126/science.279.5352.827.

引用本文的文献

1
Copper drives prion protein phase separation and modulates aggregation.
Sci Adv. 2023 Nov 3;9(44):eadi7347. doi: 10.1126/sciadv.adi7347.
3
Mutant-selective topologic conversion facilitates selective degradation of a pathogenic prion isoform.
Cell Death Differ. 2020 Jan;27(1):284-296. doi: 10.1038/s41418-019-0354-1. Epub 2019 May 24.
5
The use of PrP transgenic to replace and reduce vertebrate hosts in the bioassay of mammalian prion infectivity.
F1000Res. 2018 May 15;7:595. doi: 10.12688/f1000research.14753.1. eCollection 2018.
6
Lysosomal Quality Control in Prion Diseases.
Mol Neurobiol. 2018 Mar;55(3):2631-2644. doi: 10.1007/s12035-017-0512-8. Epub 2017 Apr 18.
7
Structure of the Sec61 channel opened by a signal sequence.
Science. 2016 Jan 1;351(6268):88-91. doi: 10.1126/science.aad4992.
9
Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein.
Neural Regen Res. 2013 Oct 25;8(30):2868-78. doi: 10.3969/j.issn.1673-5374.2013.30.009.
10
Cytosolic PrP can participate in prion-mediated toxicity.
J Virol. 2014 Jul;88(14):8129-38. doi: 10.1128/JVI.00732-14. Epub 2014 May 7.

本文引用的文献

1
Cell surface accumulation of a truncated transmembrane prion protein in Gerstmann-Straussler-Scheinker disease P102L.
J Biol Chem. 2002 Jul 5;277(27):24554-61. doi: 10.1074/jbc.M200213200. Epub 2002 Apr 19.
2
Signal sequences control gating of the protein translocation channel in a substrate-specific manner.
Dev Cell. 2002 Feb;2(2):207-17. doi: 10.1016/s1534-5807(01)00120-4.
3
Topogenesis of membrane proteins: determinants and dynamics.
FEBS Lett. 2001 Aug 31;504(3):87-93. doi: 10.1016/s0014-5793(01)02712-0.
4
Substrate-specific regulation of the ribosome- translocon junction by N-terminal signal sequences.
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7823-8. doi: 10.1073/pnas.141125098. Epub 2001 Jun 19.
5
Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain.
J Biol Chem. 2001 Jul 13;276(28):26132-40. doi: 10.1074/jbc.M101638200. Epub 2001 May 18.
7
Prion diseases of humans and animals: their causes and molecular basis.
Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519.
8
Prion protein contains a second endoplasmic reticulum targeting signal sequence located at its C terminus.
J Biol Chem. 2001 Apr 20;276(16):13388-94. doi: 10.1074/jbc.M007331200. Epub 2001 Jan 22.
9
Most pathogenic mutations do not alter the membrane topology of the prion protein.
J Biol Chem. 2001 Jan 19;276(3):2212-20. doi: 10.1074/jbc.M006763200. Epub 2000 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验