Perez-Castineira Jose R, Lopez-Marques Rosa L, Villalba Jose M, Losada Manuel, Serrano Aurelio
Instituto de Bioquimica Vegetal y Fotosintesis (Universidad de Sevilla-Consejo Superior de Investigaciones Cientificas), Avda Américo Vespucio sn, 41092 Sevilla, Spain.
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15914-9. doi: 10.1073/pnas.242625399. Epub 2002 Nov 25.
Two types of proteins that hydrolyze inorganic pyrophosphate (PPi), very different in both amino acid sequence and structure, have been characterized to date: soluble and membrane-bound proton-pumping pyrophosphatases (sPPases and H(+)-PPases, respectively). sPPases are ubiquitous proteins that hydrolyze PPi releasing heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes. The budding yeast Saccharomyces cerevisiae has two sPPases that are located in the cytosol and in the mitochondria. Previous attempts to knock out the gene coding for a cytosolic sPPase (IPP1) have been unsuccessful, thus suggesting that this protein is essential for growth. Here, we describe the generation of a conditional S. cerevisiae mutant (named YPC-1) whose functional IPP1 gene is under the control of a galactose-dependent promoter. Thus, YPC-1 cells become growth arrested in glucose but they regain the ability to grow on this carbon source when transformed with autonomous plasmids bearing diverse foreign H+-PPase genes under the control of a yeast constitutive promoter. The heterologously expressed H+-PPases are distributed among different yeast membranes, including the plasma membrane, functional complementation by these integral membrane proteins being consistently sensitive to external pH. These results demonstrate that hydrolysis of cytosolic PPi is essential for yeast growth and that this function is not substantially affected by the intrinsic characteristics of the PPase protein that accomplishes it. Moreover, this is, to our knowledge, the first direct evidence that H+-PPases can mediate net hydrolysis of PPi in vivo. YPC-1 mutant strain constitutes a convenient expression system to perform studies aimed at the elucidation of the structure-function relationships of this type of proton pumps.
迄今为止,已鉴定出两种水解无机焦磷酸(PPi)的蛋白质,它们在氨基酸序列和结构上都有很大差异:可溶性和膜结合质子泵焦磷酸酶(分别为sPPases和H(+)-PPases)。sPPases是普遍存在的蛋白质,水解PPi时会释放热量,而H+-PPases在动物和真菌细胞中尚未被发现,它将PPi水解的能量与质子跨生物膜的移动相偶联。出芽酵母酿酒酵母有两种sPPases,分别位于细胞质和线粒体中。此前敲除编码细胞质sPPase(IPP1)的基因的尝试均未成功,这表明该蛋白质对生长至关重要。在此,我们描述了一种条件性酿酒酵母突变体(命名为YPC-1)的产生,其功能性IPP1基因受半乳糖依赖性启动子的控制。因此,YPC-1细胞在葡萄糖中生长停滞,但当用携带酵母组成型启动子控制的不同外源H+-PPase基因的自主质粒转化时,它们恢复了在这种碳源上生长的能力。异源表达的H+-PPases分布在不同的酵母膜中,包括质膜,这些整合膜蛋白的功能互补对外部pH始终敏感。这些结果表明,细胞质PPi的水解对酵母生长至关重要,并且该功能不受完成此功能的PPase蛋白的内在特性的实质性影响。此外,据我们所知,这是H+-PPases可以在体内介导PPi净水解的首个直接证据。YPC-1突变株构成了一个方便的表达系统,可用于开展旨在阐明这类质子泵结构-功能关系的研究。