Suppr超能文献

基于荧光共振能量转移的活细胞化学计量学。

Fluorescence resonance energy transfer-based stoichiometry in living cells.

作者信息

Hoppe Adam, Christensen Kenneth, Swanson Joel A

机构信息

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

出版信息

Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.

Abstract

Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks.

摘要

对荧光标记分子之间的荧光共振能量转移(FRET)进行成像,可以测量活细胞内分子间相互作用的时间和位置。目前的显微镜方法以任意单位测量FRET,无法区分FRET效率以及复合物中供体和受体的比例。在此,我们描述了一种化学计量方法,该方法使用三张显微镜荧光图像来测量活细胞中的FRET效率、供体和受体的相对浓度以及复合物中供体和受体的比例。FRET化学计量源自这样一个概念,即特定的供体-受体复合物会产生特征性的FRET效率,如果对其进行测量,就可以对相互作用的组分进行化学计量区分。第一个方程确定FRET效率以及与供体形成复合物的受体分子比例。第二个方程通过估计由于能量转移而损失的供体荧光来确定形成复合物的供体分子比例。这消除了通过受体光漂白来确定总供体浓度的需求,并允许对同一细胞进行重复测量。第三个方程得出总受体与总供体分子的比例。通过对溶液和细胞内的青色荧光蛋白(CFP)、柠檬黄以及连接的CFP-柠檬黄融合蛋白的荧光进行显微镜测量,证实了该理论和方法。总之,由这些方程推导得出的方法能够在图像的每个像素处灵敏、快速且可重复地检测供体、受体以及供体-受体复合物的化学计量。通过对分子相互作用进行精确成像,FRET化学计量为细胞内分子网络的定量研究开辟了新领域。

相似文献

1
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Biophys J. 2002 Dec;83(6):3652-64. doi: 10.1016/S0006-3495(02)75365-4.
4
High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
Biophys Chem. 2007 May;127(3):155-64. doi: 10.1016/j.bpc.2007.01.008. Epub 2007 Feb 1.
5
9
FRET-based analysis of TRPC subunit stoichiometry.
Cell Calcium. 2003 May-Jun;33(5-6):463-70. doi: 10.1016/s0143-4160(03)00061-7.
10
Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
FEBS Lett. 2002 Nov 6;531(2):245-9. doi: 10.1016/s0014-5793(02)03508-1.

引用本文的文献

2
Receptor activity-modifying protein modulation of parathyroid hormone-1 receptor function and signaling.
Front Pharmacol. 2024 Sep 23;15:1455231. doi: 10.3389/fphar.2024.1455231. eCollection 2024.
3
Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.
J Microsc. 2025 May;298(2):123-184. doi: 10.1111/jmi.13270. Epub 2024 Feb 15.
5
In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET.
Biophys Rep (N Y). 2023 May 9;3(2):100110. doi: 10.1016/j.bpr.2023.100110. eCollection 2023 Jun 14.
7
Optimal inference of molecular interaction dynamics in FRET microscopy.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2211807120. doi: 10.1073/pnas.2211807120. Epub 2023 Apr 4.
8
quantitative FRET small animal imaging: intensity versus lifetime-based FRET.
bioRxiv. 2023 Apr 22:2023.01.24.525411. doi: 10.1101/2023.01.24.525411.
9
Regorafenib induces Bim-mediated intrinsic apoptosis by blocking AKT-mediated FOXO3a nuclear export.
Cell Death Discov. 2023 Jan 31;9(1):37. doi: 10.1038/s41420-023-01338-9.
10
An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles.
RSC Adv. 2019 Nov 14;9(64):37292-37299. doi: 10.1039/c9ra05774a. eCollection 2019 Nov 13.

本文引用的文献

1
Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.
Science. 2002 May 3;296(5569):913-6. doi: 10.1126/science.1068539.
2
Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells.
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15003-8. doi: 10.1073/pnas.211564598.
3
Receptor sensitivity in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):123-7. doi: 10.1073/pnas.011589998. Epub 2001 Dec 11.
4
5
Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes.
Biophys J. 2001 Oct;81(4):2395-402. doi: 10.1016/S0006-3495(01)75886-9.
6
Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications.
J Biol Chem. 2001 Aug 3;276(31):29188-94. doi: 10.1074/jbc.M102815200. Epub 2001 May 31.
7
Receptor-mediated activation of heterotrimeric G-proteins in living cells.
Science. 2001 Mar 23;291(5512):2408-11. doi: 10.1126/science.1055835.
8
Localized Rac activation dynamics visualized in living cells.
Science. 2000 Oct 13;290(5490):333-7. doi: 10.1126/science.290.5490.333.
10
Mechanism and cellular applications of a green fluorescent protein-based halide sensor.
J Biol Chem. 2000 Mar 3;275(9):6047-50. doi: 10.1074/jbc.275.9.6047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验