Suppr超能文献

一种基于配体的方法来理解核激素受体PXR、CAR、FXR、LXRα和LXRβ的选择性。

A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRalpha, and LXRbeta.

作者信息

Ekins Sean, Mirny Leonid, Schuetz Erin G

机构信息

Concurrent Pharmaceuticals Inc., Fort Washington, Pennsylvania 19034, USA.

出版信息

Pharm Res. 2002 Dec;19(12):1788-800. doi: 10.1023/a:1021429105173.

Abstract

In recent years discussion of nuclear hormone receptors, transporters, and drug-metabolizing enzymes has begun to take place as our knowledge of the overlapping ligand specificity of each of these proteins has deepened. This ligand specificity is potentially valuable information for influencing future drug design, as it is important to avoid certain enzymes or transporters in order to circumvent potential drug-drug interactions. Similarly, it is critical that the induction of these same proteins via nuclear hormone receptors is avoided, as this can result in further toxicities. Using a ligand-based approach in this review we describe new and previously published computational models for PXR, CAR, FXR, LXRalpha, and LXRbeta that may help in understanding the complexity of interactions between transporters and enzymes. The value of these types of models is that they may enable us to design molecules to selectively modulate pathways for therapeutic effect and in addition predict the potential for drug interactions more reliably. Simultaneously, we might learn which came first: the transporter, the enzyme, or the nuclear hormone receptor?

摘要

近年来,随着我们对这些蛋白质各自重叠的配体特异性的认识不断加深,关于核激素受体、转运蛋白和药物代谢酶的讨论已经开始。这种配体特异性对于影响未来药物设计可能是有价值的信息,因为为了避免潜在的药物相互作用,避开某些酶或转运蛋白很重要。同样,避免通过核激素受体诱导这些相同的蛋白质也至关重要,因为这可能导致进一步的毒性。在本综述中,我们采用基于配体的方法,描述了针对孕烷X受体(PXR)、组成型雄烷受体(CAR)、法尼醇X受体(FXR)、肝X受体α(LXRα)和肝X受体β(LXRβ)的新的以及先前发表的计算模型,这些模型可能有助于理解转运蛋白和酶之间相互作用的复杂性。这类模型的价值在于,它们可能使我们能够设计分子以选择性地调节治疗效果的途径,此外还能更可靠地预测药物相互作用的可能性。同时,我们可能会了解到哪个是先出现的:转运蛋白、酶还是核激素受体?

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验