Suppr超能文献

等密度区的进化:来自单核苷酸多态性频率分布的证据。

The evolution of isochores: evidence from SNP frequency distributions.

作者信息

Lercher Martin J, Smith Nick G C, Eyre-Walker Adam, Hurst Laurence D

机构信息

Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom.

出版信息

Genetics. 2002 Dec;162(4):1805-10. doi: 10.1093/genetics/162.4.1805.

Abstract

The large-scale systematic variation in nucleotide composition along mammalian and avian genomes has been a focus of the debate between neutralist and selectionist views of molecular evolution. Here we test whether the compositional variation is due to mutation bias using two new tests, which do not assume compositional equilibrium. In the first test we assume a standard population genetics model, but in the second we make no assumptions about the underlying population genetics. We apply the tests to single-nucleotide polymorphism data from noncoding regions of the human genome. Both models of neutral mutation bias fit the frequency distributions of SNPs segregating in low- and medium-GC-content regions of the genome adequately, although both suggest compositional nonequilibrium. However, neither model fits the frequency distribution of SNPs from the high-GC-content regions. In contrast, a simple population genetics model that incorporates selection or biased gene conversion cannot be rejected. The results suggest that mutation biases are not solely responsible for the compositional biases found in noncoding regions.

摘要

沿着哺乳动物和鸟类基因组核苷酸组成的大规模系统变异一直是分子进化的中性论和选择论观点之间争论的焦点。在这里,我们使用两种新的测试方法来检验这种组成变异是否是由于突变偏好引起的,这两种测试方法并不假定组成平衡。在第一个测试中,我们假设一个标准的群体遗传学模型,但在第二个测试中,我们不对潜在的群体遗传学做任何假设。我们将这些测试应用于人类基因组非编码区域的单核苷酸多态性数据。尽管两种模型都表明存在组成不平衡,但中性突变偏好的两种模型都能充分拟合基因组中低GC含量和中等GC含量区域中分离的单核苷酸多态性的频率分布。然而,没有一个模型能拟合高GC含量区域的单核苷酸多态性频率分布。相比之下,一个包含选择或偏向基因转换的简单群体遗传学模型不能被排除。结果表明,突变偏好并非非编码区域中发现的组成偏好的唯一原因。

相似文献

1
The evolution of isochores: evidence from SNP frequency distributions.
Genetics. 2002 Dec;162(4):1805-10. doi: 10.1093/genetics/162.4.1805.
3
Vanishing GC-rich isochores in mammalian genomes.
Genetics. 2002 Dec;162(4):1837-47. doi: 10.1093/genetics/162.4.1837.
4
The vertebrate genome: isochores and evolution.
Mol Biol Evol. 1993 Jan;10(1):186-204. doi: 10.1093/oxfordjournals.molbev.a039994.
5
Fixation biases affecting human SNPs.
Trends Genet. 2004 Mar;20(3):122-6. doi: 10.1016/j.tig.2004.01.005.
6
The impact of recombination on nucleotide substitutions in the human genome.
PLoS Genet. 2008 May 9;4(5):e1000071. doi: 10.1371/journal.pgen.1000071.
9
The neoselectionist theory of genome evolution.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8385-90. doi: 10.1073/pnas.0701652104. Epub 2007 May 9.
10
Context-dependent mutation rates may cause spurious signatures of a fixation bias favoring higher GC-content in humans.
Mol Biol Evol. 2007 Oct;24(10):2196-202. doi: 10.1093/molbev/msm149. Epub 2007 Jul 26.

引用本文的文献

1
Emergence of enhancers at late DNA replicating regions.
Nat Commun. 2024 Apr 24;15(1):3451. doi: 10.1038/s41467-024-47391-5.
2
Intragenomic variation in non-adaptive nucleotide biases causes underestimation of selection on synonymous codon usage.
PLoS Genet. 2022 Jun 17;18(6):e1010256. doi: 10.1371/journal.pgen.1010256. eCollection 2022 Jun.
3
Unusual mammalian usage of TGA stop codons reveals that sequence conservation need not imply purifying selection.
PLoS Biol. 2022 May 12;20(5):e3001588. doi: 10.1371/journal.pbio.3001588. eCollection 2022 May.
4
Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias.
Mol Biol Evol. 2021 Jul 29;38(8):3247-3266. doi: 10.1093/molbev/msab099.
6
A century of bias in genetics and evolution.
Heredity (Edinb). 2019 Jul;123(1):33-43. doi: 10.1038/s41437-019-0194-2. Epub 2019 Jun 12.
7
Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias.
Nat Ecol Evol. 2018 Jan;2(1):164-173. doi: 10.1038/s41559-017-0372-7. Epub 2017 Nov 20.
8
Population genomics of picophytoplankton unveils novel chromosome hypervariability.
Sci Adv. 2017 Jul 5;3(7):e1700239. doi: 10.1126/sciadv.1700239. eCollection 2017 Jul.
9
Decoding mechanisms by which silent codon changes influence protein biogenesis and function.
Int J Biochem Cell Biol. 2015 Jul;64:58-74. doi: 10.1016/j.biocel.2015.03.011. Epub 2015 Mar 26.
10
Evolutionary patterns of DNA base composition and correlation to polymorphisms in DNA repair systems.
Nucleic Acids Res. 2015 Apr 20;43(7):3614-25. doi: 10.1093/nar/gkv197. Epub 2015 Mar 12.

本文引用的文献

1
Vanishing GC-rich isochores in mammalian genomes.
Genetics. 2002 Dec;162(4):1837-47. doi: 10.1093/genetics/162.4.1837.
2
The evolution of isochores.
Nat Rev Genet. 2001 Jul;2(7):549-55. doi: 10.1038/35080577.
3
Synonymous codon bias is not caused by mutation bias in G+C-rich genes in humans.
Mol Biol Evol. 2001 Jun;18(6):982-6. doi: 10.1093/oxfordjournals.molbev.a003899.
4
Comparison of human genetic and sequence-based physical maps.
Nature. 2001 Feb 15;409(6822):951-3. doi: 10.1038/35057185.
5
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.
6
Evidence for a high ancestral GC content in Drosophila.
Mol Biol Evol. 2000 Nov;17(11):1710-7. doi: 10.1093/oxfordjournals.molbev.a026269.
7
Hitchhiking under positive Darwinian selection.
Genetics. 2000 Jul;155(3):1405-13. doi: 10.1093/genetics/155.3.1405.
8
Recent selection on synonymous codon usage in Drosophila.
J Mol Evol. 1999 Sep;49(3):343-51. doi: 10.1007/pl00006557.
9
Isochores result from mutation not selection.
Nature. 1999 Jul 1;400(6739):30-1. doi: 10.1038/21804.
10
Isochore evolution in mammals: a human-like ancestral structure.
Genetics. 1998 Dec;150(4):1577-84. doi: 10.1093/genetics/150.4.1577.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验