Tauber Michael J, Mathies Richard A
Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Am Chem Soc. 2003 Feb 5;125(5):1394-402. doi: 10.1021/ja021134a.
The structure and thermodynamics of the hydrated electron are probed with resonance Raman spectroscopy of isotopic mixtures of H(2)O and D(2)O. The strongly enhanced intramolecular bends of e(-)(H(2)O) and e(-)(D(2)O) produce single downshifted bands, whereas the e(-)(HOD) bend consists of two components: one slightly upshifted from the 1,446 cm(-1) bulk frequency to 1,457 cm(-1) and the other strongly downshifted to approximately 1,396 cm(-1). This 60 cm(-1) split and the 200 (120) cm(-1) downshifts of the OH (OD) stretch frequencies relative to bulk water reveal that the water molecules that are Franck-Condon coupled to the electron are in an asymmetric environment, with one proton forming a strong hydrogen bond to the electron. The downshifted bend and librational frequencies also indicate significantly weakened torsional restoring forces on the water molecules of e(-)(aq), which suggests that the outlying proton is a poor hydrogen bond donor to the surrounding solvent. A 1.6-fold thermodynamic preference of the electron for H(2)O is observed based on the relative intensities of the e(-)(H(2)O) and e(-)(D(2)O) bands in a 50:50 isotopic mixture. This equilibrium isotope effect is consistent with the downshifted vibrational frequencies and a relative reduction of the zero-point energy of H(2)O bound to the electron. Our results enhance the cavity model of the solvated electron and support only those models that contain water monomers as opposed to other molecular species.
通过对H₂O和D₂O同位素混合物进行共振拉曼光谱研究,探究了水合电子的结构和热力学性质。e⁻(H₂O)和e⁻(D₂O)强烈增强的分子内弯曲产生单一的低频带,而e⁻(HOD)弯曲由两个成分组成:一个从1446 cm⁻¹的本体频率略微上移至1457 cm⁻¹,另一个强烈下移至约1396 cm⁻¹。相对于本体水,这种60 cm⁻¹的分裂以及OH(OD)伸缩频率200(120)cm⁻¹的下移表明,与电子发生弗兰克 - 康登耦合的水分子处于不对称环境中,其中一个质子与电子形成强氢键。下移的弯曲和摆动频率还表明,e⁻(aq)中水分子的扭转恢复力显著减弱,这表明外围质子作为周围溶剂的氢键供体较差。基于50:50同位素混合物中e⁻(H₂O)和e⁻(D₂O)带的相对强度,观察到电子对H₂O有1.6倍的热力学偏好。这种平衡同位素效应与下移的振动频率以及与电子结合的H₂O零点能的相对降低一致。我们的结果完善了溶剂化电子的空腔模型,并仅支持那些包含水单体而非其他分子物种的模型。