Suppr超能文献

大麦(Hordeum vulgare L.)叶片中与氮素储存和再转运相关的数量性状基因座定位

Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves.

作者信息

Mickelson Suzanne, See Deven, Meyer Fletcher D, Garner John P, Foster Curt R, Blake Tom K, Fischer Andreas M

机构信息

Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA.

出版信息

J Exp Bot. 2003 Feb;54(383):801-12. doi: 10.1093/jxb/erg084.

Abstract

Nitrogen uptake and metabolism are central for vegetative and reproductive plant growth. This is reflected by the fact that nitrogen can be remobilized and reused within a plant, and this process is crucial for yield in most annual crops. A population of 146 recombinant inbred barley lines (F(8) and F(9) plants, grown in 2000 and 2001), derived from a cross between two varieties differing markedly in grain protein concentration, was used to compare the location of QTL associated with nitrogen uptake, storage and remobilization in flag leaves relative to QTL controlling developmental parameters and grain protein accumulation. Overlaps of support intervals for such QTL were found on several chromosomes, with chromosomes 3 and 6 being especially important. For QTL on these chromosomes, alleles associated with inefficient N remobilization were associated with depressed yield and higher levels of total or soluble organic nitrogen during grain filling and vice versa; therefore, genes directly involved in N recycling or genes regulating N recycling may be located on these chromosomes. Interestingly, the most prominent QTL for grain protein concentration (on chromosome 6) did not co-localize with QTL for nitrogen remobilization. However, QTL peaks for nitrate and soluble organic nitrogen were detected at this locus for plants grown in 2001 (but not in 2000). For these, alleles associated with low grain protein concentration were associated with higher soluble nitrogen levels in leaves during grain filling; therefore, gene(s) found at this locus might influence the nitrogen sink strength of developing barley grains.

摘要

氮的吸收和代谢对植物的营养生长和生殖生长至关重要。这一点体现在氮可以在植物体内被重新转运和再利用,而这个过程对大多数一年生作物的产量至关重要。利用146个重组自交大麦品系(2000年和2001年种植的F(8)和F(9)植株)组成的群体,该群体源自两个籽粒蛋白质浓度差异显著的品种之间的杂交,来比较与氮吸收、储存和旗叶中氮再转运相关的QTL的位置,相对于控制发育参数和籽粒蛋白质积累的QTL。在几条染色体上发现了此类QTL的支持区间重叠,其中3号和6号染色体尤为重要。对于这些染色体上的QTL,与低效氮再转运相关的等位基因与籽粒灌浆期间产量降低和总有机氮或可溶性有机氮水平升高相关,反之亦然;因此,直接参与氮循环的基因或调节氮循环的基因可能位于这些染色体上。有趣的是,籽粒蛋白质浓度最显著的QTL(位于6号染色体上)与氮再转运的QTL没有共定位。然而,在2001年种植的植株中(但2000年没有),在这个位点检测到了硝酸盐和可溶性有机氮的QTL峰值。对于这些,与低籽粒蛋白质浓度相关的等位基因与籽粒灌浆期间叶片中较高的可溶性氮水平相关;因此,在这个位点发现的基因可能会影响发育中的大麦籽粒的氮库强度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验