Suppr超能文献

SOMoRe:一种用于分子置换的多维搜索与优化方法。

SOMoRe: a multi-dimensional search and optimization approach to molecular replacement.

作者信息

Jamrog Diane C, Zhang Yin, Phillips George N

机构信息

Department of Computational and Applied Mathematics, Rice University, Houston, Texas, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2003 Feb;59(Pt 2):304-14. doi: 10.1107/s0907444902021935. Epub 2003 Jan 23.

Abstract

Commonly used traditional molecular-replacement (MR) methods, though often successful, have difficulty solving certain classes of MR problems. In addition, MR problems are generally very difficult global optimization problems because of the enormous number of local minima in traditionally computed target functions. As a result, a new MR program called SOMoRe is introduced that implements a new global optimization strategy that has two major components: (i) a six-dimensional global search of a target function computed from low-resolution data and (ii) multi-start local optimization. Because the target function computed from low-resolution data is relatively smooth, the global search can coarsely sample the MR variable space to identify good starting points for extensive multi-start local optimization. Consequently, SOMoRe was able to straightforwardly solve four realistic test problems, including two that could not be directly solved by traditional MR programs, and SOMoRe solved a problem using a less complete model than those required by two traditional programs and a stochastic six-dimensional program. Based on these results, this new strategy promises to extend the applicability and robustness of MR.

摘要

常用的传统分子置换(MR)方法虽然常常成功,但在解决某些类型的MR问题时存在困难。此外,由于传统计算的目标函数中存在大量局部最小值,MR问题通常是非常困难的全局优化问题。因此,引入了一个名为SOMoRe的新MR程序,它实现了一种新的全局优化策略,该策略有两个主要组成部分:(i)对从低分辨率数据计算出的目标函数进行六维全局搜索,以及(ii)多起点局部优化。由于从低分辨率数据计算出的目标函数相对平滑,全局搜索可以对MR变量空间进行粗略采样,以识别广泛的多起点局部优化的良好起点。因此,SOMoRe能够直接解决四个实际测试问题,包括两个传统MR程序无法直接解决的问题,并且SOMoRe使用比两个传统程序和一个随机六维程序所需的模型更不完整的模型解决了一个问题。基于这些结果,这种新策略有望扩展MR的适用性和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验