Sharma Pankaz K, De Visser Sam P, Ogliaro François, Shaik Sason
Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
J Am Chem Soc. 2003 Feb 26;125(8):2291-300. doi: 10.1021/ja0282487.
High-valent metal-oxo complexes catalyze C-H bond activation by oxygen insertion, with an efficiency that depends on the identity of the transition metal and its oxidation state. Our study uses density functional calculations and theoretical analysis to derive fundamental factors of catalytic activity, by comparison of a ruthenium-oxo catalyst with its iron-oxo analogue toward methane hydroxylation. The study focuses on the ruthenium analogue of the active species of the enzyme cytochrome P450, which is known to be among the most potent catalysts for C-H activation. The computed reaction pathways reveal one high-spin (HS) and two low-spin (LS) mechanisms, all nascent from the low-lying states of the ruthenium-oxo catalyst (Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem. Int. Ed. 2001, 40, 2874-2878). These mechanisms involve a bond activation phase, in which the transition states (TS's) appear as hydrogen abstraction species, followed by a C-O bond making phase, through a rebound of the methyl radical on the metal-hydroxo complex. However, while the HS mechanism has a significant rebound barrier, and hence a long lifetime of the radical intermediate, by contrast, the LS ones are effectively concerted with small barriers to rebound, if at all. Unlike the iron catalyst, the hydroxylation reaction for the ruthenium analogue is expected to follow largely a single-state reactivity on the LS surface, due to a very large rebound barrier of the HS process and to the more efficient spin crossover expected for ruthenium. As such, ruthenium-oxo catalysts (Groves, J. T.; Shalyaev, K.; Lee, J. In The Porphyrin Handbook; Biochemistry and Binding: Activation of Small Molecules, Vol. 4; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; pp 17-40) are expected to lead to more stereoselective hydroxylations compared with the corresponding iron-oxo reactions. It is reasoned that the ruthenium-oxo catalyst should have larger turnover numbers compared with the iron-oxo analogue, due to lesser production of suicidal side products that destroy the catalyst (Ortiz de Montellano, P. R.; Beilan, H. S.; Kunze, K. L.; Mico, B. A. J. Biol. Chem. 1981, 256, 4395-4399). The computations reveal also that the ruthenium complex is more electrophilic than its iron analogue, having lower hydrogen abstraction barriers. These reactivity features of the ruthenium-oxo system are analyzed and shown to originate from a key fundamental factor, namely, the strong 4d(Ru)-2p(O,N) overlaps, which produce high-lying pi(Ru-O), sigma(Ru-O), and sigma(Ru-N) orbitals and thereby to lead to a preference of ruthenium for higher-valent oxidation states with higher electrophilicity, for the effectively concerted LS hydroxylation mechanism, and for less suicidal complexes. As such, the ruthenium-oxo species is predicted to be a more robust catalyst than its iron-oxo analogue.
高价金属-氧配合物通过氧插入催化C-H键活化,其效率取决于过渡金属的种类及其氧化态。我们的研究通过比较钌-氧催化剂及其铁-氧类似物对甲烷羟基化反应,利用密度泛函计算和理论分析来推导催化活性的基本因素。该研究聚焦于细胞色素P450酶活性物种的钌类似物,已知其是C-H活化最有效的催化剂之一。计算得到的反应途径揭示了一种高自旋(HS)和两种低自旋(LS)机制,所有这些机制均源自钌-氧催化剂的低能态(奥利亚罗,F.;德维瑟,S.P.;格罗夫斯,J.T.;沙伊克,S.《德国应用化学》2001年,40卷,2874 - 2878页)。这些机制涉及一个键活化阶段,其中过渡态(TS's)表现为氢抽象物种,随后是一个C-O键形成阶段,通过甲基自由基在金属-羟基配合物上的反弹实现。然而,虽然HS机制具有显著的反弹势垒,因此自由基中间体寿命较长,但相比之下,LS机制如果存在反弹势垒则非常小,实际上是协同进行的。与铁催化剂不同,由于HS过程的反弹势垒非常大以及钌预期更有效的自旋交叉,钌类似物的羟基化反应预计在很大程度上遵循LS表面上的单态反应性。因此,与相应的铁-氧反应相比,钌-氧催化剂(格罗夫斯,J.T.;沙利亚耶夫,K.;李,J.《卟啉手册》;生物化学与结合:小分子的活化,第4卷;卡迪什,K.M.,史密斯,K.M.,吉拉尔,R.编;学术出版社:纽约,2000年;第17 - 40页)预计会导致更具立体选择性的羟基化反应。据推测,与铁-氧类似物相比,钌-氧催化剂应该具有更大的周转数,这是因为破坏催化剂的自杀性副产物产生较少(奥尔蒂斯·德·蒙特利亚诺,P.R.;贝兰,H.S.;昆泽,K.L.;米科,B.A.《生物化学杂志》1981年,256卷,4395 - 4399页)。计算还表明,钌配合物比其铁类似物更具亲电性,具有更低的氢抽象势垒。对钌-氧体系的这些反应特性进行了分析,并表明其源自一个关键的基本因素,即强烈的4d(Ru)-2p(O,N)重叠,这产生了高能的π(Ru - O)、σ(Ru - O)和σ(Ru - N)轨道,从而导致钌更倾向于具有更高亲电性的高价氧化态、有效的协同LS羟基化机制以及较少的自杀性配合物。因此,预计钌-氧物种比其铁-氧类似物是一种更稳健的催化剂。