Suppr超能文献

β-淀粉样肽(1-42)诱导的氧化应激和神经毒性:对阿尔茨海默病大脑神经退行性变的影响。综述。

Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review.

作者信息

Butterfield D Allan

机构信息

Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA.

出版信息

Free Radic Res. 2002 Dec;36(12):1307-13. doi: 10.1080/1071576021000049890.

Abstract

Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid beta-peptide (1-42) [Abeta(1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated Abeta(1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of Abeta(1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of Abeta(1-42) is helical, and invoking the i + 4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of Abeta(1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of Abeta(1-42). The free radical scavenger vitamin E prevented A(beta (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for Abeta-associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to Abeta(1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). Abeta inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production (alpha-enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of Abeta(1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress and neurodegeneration in AD.

摘要

在阿尔茨海默病(AD)大脑中可观察到氧化应激,其表现为蛋白质氧化、脂质过氧化、DNA氧化以及3-硝基酪氨酸形成等指标。淀粉样β肽(1-42)[Aβ(1-42)]可能在AD发病机制中起核心作用。我们实验室及其他研究表明,Aβ(1-42)诱导的自由基氧化应激与AD大脑中的神经退行性变有关。本文回顾了我们实验室的一些相关研究。最近,我们在体外和体内均表明,Aβ(1-42)的甲硫氨酸残基35(Met-35)对其氧化应激和神经毒性特性至关重要。由于Aβ(1-42)的C末端区域呈螺旋状,根据螺旋的i + 4规则,我们推测已知与Met-35的S原子处于范德华距离内的Ile-31的羧基氧会与后者相互作用。这种相互作用可能会改变Met-35的氧化敏感性,即自由基的形成。与该假设一致,用破坏螺旋的氨基酸脯氨酸取代Ile-31完全消除了Aβ(1-42)的氧化应激和神经毒性特性。通过用带负电荷的天冬氨酸取代Gly-37从脂质双层中去除Met-35残基,消除了Aβ(1-42)的氧化应激和神经毒性特性。自由基清除剂维生素E可预防Aβ(1-42)诱导的海马神经元中活性氧生成、蛋白质氧化、脂质过氧化和神经毒性,这与我们关于Aβ相关自由基氧化应激诱导AD神经退行性变的模型一致。载脂蛋白E等位基因4是AD的一个风险因素。与野生型小鼠相比,载脂蛋白E基因敲除小鼠的突触体更容易受到Aβ诱导的氧化应激(蛋白质氧化、脂质过氧化和活性氧生成)影响。我们还研究了等位基因特异性人类载脂蛋白E基因敲入小鼠的突触体。通过相同指标评估,人类ApoE4小鼠的脑膜比ApoE2或E3小鼠的脑膜更容易受到Aβ(1-42)诱导的氧化应激影响,这与AD大脑中氧化环境与患该疾病风险增加之间存在关联的观点一致。使用死后4小时内获取的AD和对照大脑中的蛋白质进行免疫沉淀,在AD大脑中鉴定出了选择性氧化的蛋白质。肌酸激酶(CK)和β-肌动蛋白的羰基基团增加,这是蛋白质氧化的一个指标,而主要的谷氨酸转运体Glt-1与脂质过氧化产物4-羟基-2-壬烯醛(HNE)的结合增加。Aβ抑制CK并导致脂质过氧化,从而导致HNE形成。这些发现的意义涉及能量利用减少、细胞骨架蛋白组装改变以及谷氨酸对神经元兴奋性毒性增加,所有这些在AD中均有报道。通过蛋白质组学分析在AD大脑中还鉴定出了其他氧化修饰的蛋白质,这些氧化修饰的蛋白质可能与兴奋性毒性增加(谷氨酰胺合成酶)、受损或聚集蛋白质的异常蛋白酶体降解(泛素C末端水解酶L-1)、能量产生改变(α-烯醇化酶)以及生长锥伸长和方向性减弱(二氢嘧啶酶相关蛋白2)有关。综上所述,上述研究表明Met-35是Aβ(1-42)氧化应激和神经毒性特性的关键,可能有助于解释载脂蛋白E等位基因对AD风险的依赖性、AD大脑中的一些功能和结构改变,并有力支持Aβ(1-42)诱导的氧化应激和神经退行性变在AD中的致病作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验