Suppr超能文献

褪黑素:一种生物钟输出,一种生物钟输入。

Melatonin: a clock-output, a clock-input.

作者信息

Stehle J H, von Gall C, Korf H-W

机构信息

Institute of Anatomy II, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.

出版信息

J Neuroendocrinol. 2003 Apr;15(4):383-9. doi: 10.1046/j.1365-2826.2003.01001.x.

Abstract

In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin-proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino-hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally-restricted gate and thus lowers the threshold for adenosine to induce cAMP-sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine-endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.

摘要

在哺乳动物中,昼夜节律系统由三个主要部分组成:侧眼、下丘脑视交叉上核(SCN)和松果体。SCN包含内源性振荡器,该振荡器每天通过视网膜输入与环境光照条件同步。在由SCN输出驱动的身体众多昼夜节律中,松果体中褪黑素的合成起着编码黑暗持续时间的激素信息的作用。这种昼夜节律信息的传播依赖于褪黑素受体的激活,褪黑素受体在SCN和垂体结节部(PT)中表达最为显著,但在许多其他组织中也有表达。因此,褪黑素缺乏或褪黑素受体缺乏应该会对昼夜节律生物学产生影响。然而,我们对能产生褪黑素的小鼠与不能产生褪黑素或无法解读褪黑素信息的小鼠进行的研究表明,褪黑素对SCN内的信号转导过程只有轻微影响,至多只是设定通过视网膜下丘脑束介导的时钟误差信号的增益。褪黑素缺乏对节律产生或振荡维持没有影响。相比之下,褪黑素对PT中的节律信号传导至关重要。在这里,褪黑素与腺苷协同作用,引发时钟基因表达的节律。通过使腺苷酸环化酶敏感,褪黑素打开一个时间受限的门,从而降低腺苷诱导cAMP敏感基因的阈值。这种相互作用决定了基因表达的时间精确调节,并且通过内分泌 - 内分泌相互作用可能还影响垂体输出,这可能反映了一种普遍机制,即大脑中的主时钟使需要独特输出信号相位的外周组织中的时钟细胞同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验