Suppr超能文献

Experimental determination of object statistics from noisy images.

作者信息

Kupinski Matthew A, Clarkson Eric, Hoppin John W, Chen Liying, Barrett Harrison H

机构信息

Optical Sciences Center and Department of Radiology, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2003 Mar;20(3):421-9. doi: 10.1364/josaa.20.000421.

Abstract

Modern imaging systems rely on complicated hardware and sophisticated image-processing methods to produce images. Owing to this complexity in the imaging chain, there are numerous variables in both the hardware and the software that need to be determined. We advocate a task-based approach to measuring and optimizing image quality in which one analyzes the ability of an observer to perform a task. Ideally, a task-based measure of image quality would account for all sources of variation in the imaging system, including object variability. Often, researchers ignore object variability even though it is known to have a large effect on task performance. The more accurate the statistical description of the objects, the more believable the task-based results will be. We have developed methods to fit statistical models of objects, using only noisy image data and a well-characterized imaging system. The results of these techniques could eventually be used to optimize both the hardware and the software components of imaging systems.

摘要

相似文献

1
Experimental determination of object statistics from noisy images.
J Opt Soc Am A Opt Image Sci Vis. 2003 Mar;20(3):421-9. doi: 10.1364/josaa.20.000421.
2
Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques.
J Opt Soc Am A Opt Image Sci Vis. 2003 Mar;20(3):430-8. doi: 10.1364/josaa.20.000430.
3
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability.
J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):473-88. doi: 10.1364/josaa.18.000473.
4
Spatio-temporal Hotelling observer for signal detection from image sequences.
Opt Express. 2009 Jun 22;17(13):10946-58. doi: 10.1364/oe.17.010946.
5
Spatial and temporal motion characterization for x-ray CT.
Med Phys. 2024 Jul;51(7):4607-4621. doi: 10.1002/mp.17075. Epub 2024 Apr 23.
6
Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases.
PLoS One. 2018 Oct 25;13(10):e0206052. doi: 10.1371/journal.pone.0206052. eCollection 2018.
7
Artifacts resulting from imaging in scattering media: a theoretical prediction.
Opt Lett. 2009 Oct 1;34(19):3041-3. doi: 10.1364/OL.34.003041.
8
Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT.
Med Phys. 2012 Aug;39(8):5145-56. doi: 10.1118/1.4736420.
9
Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition.
Opt Express. 2010 Aug 30;18(18):19367-78. doi: 10.1364/OE.18.019367.

引用本文的文献

2
Approximating the Hotelling observer with autoencoder-learned efficient channels for binary signal detection tasks.
J Med Imaging (Bellingham). 2023 Sep;10(5):055501. doi: 10.1117/1.JMI.10.5.055501. Epub 2023 Sep 26.
3
Ideal Observer Computation by Use of Markov-Chain Monte Carlo With Generative Adversarial Networks.
IEEE Trans Med Imaging. 2023 Dec;42(12):3715-3724. doi: 10.1109/TMI.2023.3304907. Epub 2023 Nov 30.
4
Learning stochastic object models from medical imaging measurements by use of advanced ambient generative adversarial networks.
J Med Imaging (Bellingham). 2022 Jan;9(1):015503. doi: 10.1117/1.JMI.9.1.015503. Epub 2022 Feb 23.
6
Approximating the Ideal Observer for Joint Signal Detection and Localization Tasks by use of Supervised Learning Methods.
IEEE Trans Med Imaging. 2020 Dec;39(12):3992-4000. doi: 10.1109/TMI.2020.3009022. Epub 2020 Nov 30.
7
Approximating the Ideal Observer and Hotelling Observer for Binary Signal Detection Tasks by Use of Supervised Learning Methods.
IEEE Trans Med Imaging. 2019 Oct;38(10):2456-2468. doi: 10.1109/TMI.2019.2911211. Epub 2019 Apr 15.
8
Reconstruction-Aware Imaging System Ranking by Use of a Sparsity-Driven Numerical Observer Enabled by Variational Bayesian Inference.
IEEE Trans Med Imaging. 2019 May;38(5):1251-1262. doi: 10.1109/TMI.2018.2880870. Epub 2018 Nov 21.
9
Physiological random processes in precision cancer therapy.
PLoS One. 2018 Jun 29;13(6):e0199823. doi: 10.1371/journal.pone.0199823. eCollection 2018.
10
Learning-based stochastic object models for characterizing anatomical variations.
Phys Med Biol. 2018 Mar 14;63(6):065004. doi: 10.1088/1361-6560/aab000.

本文引用的文献

1
Transformation of characteristic functionals through imaging systems.
Opt Express. 2002 Jul 1;10(13):536-9. doi: 10.1364/oe.10.000536.
2
Statistical texture synthesis of mammographic images with super-blob lumpy backgrounds.
Opt Express. 1999 Jan 4;4(1):33-42. doi: 10.1364/oe.4.000033.
3
Natural image statistics and neural representation.
Annu Rev Neurosci. 2001;24:1193-216. doi: 10.1146/annurev.neuro.24.1.1193.
4
Natural signal statistics and sensory gain control.
Nat Neurosci. 2001 Aug;4(8):819-25. doi: 10.1038/90526.
5
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability.
J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):473-88. doi: 10.1364/josaa.18.000473.
6
Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions.
J Opt Soc Am A Opt Image Sci Vis. 1998 Jun;15(6):1520-35. doi: 10.1364/josaa.15.001520.
7
Object classification for human and ideal observers.
Vision Res. 1995 Feb;35(4):549-68. doi: 10.1016/0042-6989(94)00150-k.
8
Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance.
J Opt Soc Am A Opt Image Sci Vis. 1995 May;12(5):834-52. doi: 10.1364/josaa.12.000834.
9
Addition of a channel mechanism to the ideal-observer model.
J Opt Soc Am A. 1987 Dec;4(12):2447-57. doi: 10.1364/josaa.4.002447.
10
Objective assessment of image quality: effects of quantum noise and object variability.
J Opt Soc Am A. 1990 Jul;7(7):1266-78. doi: 10.1364/josaa.7.001266.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验