Fiala André, Spall Thomas
Julius-Maximilians-Universität Würzburg, Theodor Boveri-Institut für Biowissenschaften, Lehrstuhl für Genetik und Neurobiologie, Biozentrum, Am Hubland 97074, W rzburg, Germany.
Sci STKE. 2003 Mar 18;2003(174):PL6. doi: 10.1126/stke.2003.174.pl6.
Various genetically encoded fluorescent sensors that monitor changes in intracellular calcium concentration have been developed over the last few years. The ability to target these calcium indicators to cells and structures of interest makes them valuable tools for diverse applications and gives them distinct advantages over conventional fluorescent dyes in transgenically tractable organisms. In particular, the cameleon calcium sensors have been used successfully in a number of applications. For example, we use cameleon-2.1 to monitor in vivo brain activity in Drosophila. However, using cameleons to image intracellular calcium concentration changes in vivo is still evolving and is by no means a standard technique. Experimental details and "tricks" for dealing with equipment, techniques, and data evaluation are still restricted to a few laboratories. In this protocol for calcium imaging in Drosophila brain using cameleon-2.1, we provide guidelines to the basic principles of this novel technique in Drosophila neuroscience and, more generally, to the broad field of signal transduction research.
在过去几年中,已经开发出了多种用于监测细胞内钙浓度变化的基因编码荧光传感器。将这些钙指示剂靶向到感兴趣的细胞和结构的能力,使其成为各种应用中有价值的工具,并且在转基因易处理的生物体中,相对于传统荧光染料具有明显优势。特别是,变色龙钙传感器已经成功应用于许多领域。例如,我们使用变色龙-2.1来监测果蝇体内的大脑活动。然而,利用变色龙在体内成像细胞内钙浓度变化仍在不断发展,绝不是一项标准技术。处理设备、技术和数据评估的实验细节和“技巧”仍然局限于少数实验室。在本使用变色龙-2.1对果蝇大脑进行钙成像的实验方案中,我们为果蝇神经科学这一新技术的基本原理,以及更广泛的信号转导研究领域提供指导方针。