Suppr超能文献

一种胶体阻尼器的研究。

Investigation of a colloidal damper.

作者信息

Suciu C V, Iwatsubo T, Deki S

机构信息

Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Hyogo 657-8501, Japan.

出版信息

J Colloid Interface Sci. 2003 Mar 1;259(1):62-80. doi: 10.1016/s0021-9797(02)00076-0.

Abstract

A novel application of nanotechnology in the field of mechanical engineering, called colloidal damper (CD), is investigated. This device is complementary to the hydraulic damper (HD), having a cylinder-piston construction. Particularly for CD, the hydraulic oil is replaced by a colloidal suspension, which consists of a mesoporous matrix and a lyophobic fluid. In this work, the porous matrix is from silica gel modified by linear chains of n-alkylchlorosilanes and water is considered as an associated working fluid. A design solution from a practical point of view of the CD test rig and the measuring technique of the hysteresis are described. A brief review of the water physical properties relative to the CD concept is presented. Influence of the bonding density, length of the grafted molecule, pore diameter, and particle diameter on the CD hysteresis is investigated for distinctive types and mixtures of silica gels. Temperature variation during functioning is recorded and the CD cycle is interpreted from a thermodynamic standpoint. Variation of the CD dissipated energy and efficiency with pressure, water quantity, and relaxation time is illustrated. Experimental results are justified by the analysis of the water flow into the porous matrix, CD thermodynamics, and the mechanism of the energy dissipation. Our findings agree with the previously published data.

摘要

研究了纳米技术在机械工程领域的一种新应用,即胶体阻尼器(CD)。该装置与液压阻尼器(HD)互补,具有缸 - 活塞结构。特别是对于CD,液压油被一种胶体悬浮液取代,该悬浮液由介孔基质和疏液流体组成。在这项工作中,多孔基质来自用正烷基氯硅烷线性链改性的硅胶,水被视为相关的工作流体。从实际角度描述了CD试验台的设计方案和滞后现象的测量技术。简要介绍了与CD概念相关的水的物理性质。针对不同类型和混合的硅胶,研究了键合密度、接枝分子长度、孔径和粒径对CD滞后现象的影响。记录了运行过程中的温度变化,并从热力学角度解释了CD循环。说明了CD耗散能量和效率随压力、水量和松弛时间的变化。通过对水流入多孔基质、CD热力学和能量耗散机制的分析,验证了实验结果。我们的研究结果与先前发表的数据一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验