Suppr超能文献

Adaptive internal state space construction method for reinforcement learning of a real-world agent.

作者信息

Samejima K, Omori T

机构信息

Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakachi 2-24-26 Koganei, Tokyo, Japan

出版信息

Neural Netw. 1999 Oct;12(7-8):1143-1155. doi: 10.1016/s0893-6080(99)00055-6.

Abstract

One of the difficulties encountered in the application of the reinforcement learning to real-world problems is the construction of a discrete state space from a continuous sensory input signal. In the absence of a priori knowledge about the task, a straightforward approach to this problem is to discretize the input space into a grid, and to use a lookup table. However, this method suffers from the curse of dimensionality. Some studies use continuous function approximators such as neural networks instead of lookup tables. However, when global basis functions such as sigmoid functions are used, convergence cannot be guaranteed. To overcome this problem, we propose a method in which local basis functions are incrementally assigned depending on the task requirement. Initially, only one basis function is allocated over the entire space. The basis function is divided according to the statistical property of locally weighted temporal difference error (TD error) of the value function. We applied this method to an autonomous robot collision avoidance problem, and evaluated the validity of the algorithm in simulation. The proposed algorithm, which we call adaptive basis division (ABD) algorithm, achieved the task using a smaller number of basis functions than the conventional methods. Moreover, we applied the method to a goal-directed navigation problem of a real mobile robot. The action strategy was learned using a database of sensor data, and it was then used for navigation of a real machine. The robot reached the goal using a smaller number of internal states than with the conventional methods.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验