Suppr超能文献

Text compression via alphabet re-representation.

作者信息

Long P M., Natsev A I., Vitter J S.

机构信息

Department of Information Systems and Computer Science, National University of Singapore, Singapore, Singapore

出版信息

Neural Netw. 1999 Jun;12(4-5):755-765. doi: 10.1016/s0893-6080(99)00022-2.

Abstract

This article introduces the concept of alphabet re-representation in the context of text compression. We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of our implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验