Nozaki Hisayoshi, Matsuzaki Motomichi, Takahara Manabu, Misumi Osami, Kuroiwa Haruko, Hasegawa Masami, Shin-i Tadasu, Kohara Yuji, Ogasawara Naotake, Kuroiwa Tsuneyoshi
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
J Mol Evol. 2003 Apr;56(4):485-97. doi: 10.1007/s00239-002-2419-9.
Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (alpha- and beta-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1alpha, alpha-tubulin, and beta-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various primary and secondary plastid-containing lineages (green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, and Heterolobosea. The red algae represented the sister lineage to Group B. Using 34 OTUs for which essentially the entire amino acid sequences of the four genes are known, MP, distance, quartet puzzling, and two types of maximum likelihood (ML) calculations all robustly resolved the monophyly of Group B, as well as the basal position of red algae within eukaryotic organisms. In addition, phylogenetic analyses of a concatenated 4639-amino-acid sequence for 12 nuclear genes (excluding the EF-2 gene) of 12 mitochondria-containing OTUs (including C. merolae) resolved a robust non-sister relationship between green plants and red algae within a robust monophyletic group composed of red algae and the eukaryotic organisms belonging to Group B. A new scenario for the origin and evolution of plastids is suggested, based on the basal phylogenetic position of the red algae within the large clade (Group B plus red algae). The primary plastid endosymbiosis likely occurred once in the common ancestor of this large clade, and the primary plastids were subsequently lost in the ancestor(s) of the Discicristata (euglenoids, Kinetoplastida, and Heterolobosea), Heterokontophyta, and Alveolata (apicomplexans and Ciliophora). In addition, a new concept of "Plantae" is proposed for phototrophic and nonphototrophic organisms belonging to Group B and red algae, on the basis of the common history of the primary plastid endosymbiosis. The Plantae include primary plastid-containing phototrophs and nonphototrophic eukaryotes that possibly contain genes of cyanobacterial origin acquired in the primary endosymbiosis.
红藻是主要的光合真核生物谱系之一,其特征在于具有原始特征,例如缺乏鞭毛以及叶绿体中存在藻胆蛋白。最近使用核基因序列进行的分子系统发育研究提出了关于红藻与绿色植物之间关系的两种相互矛盾的假说(单系性与非单系性)。尽管最近使用来自广泛真核生物谱系的多个核基因进行了界级系统发育分析,但他们使用的是隐藻核形体(作为红藻分类单元)的高度分歧的基因序列或不完整的红藻基因序列。此外,以前基于核基因的真核生物系统发育通常包括非常远缘的古细菌序列(指定为外类群)和/或无线粒体生物,由于寄生或线粒体缺失,这些生物可能携带异常的基因替代。在这里,我们使用核多基因序列对含线粒体的真核生物的各种谱系进行了系统发育分析,包括来自原始红藻梅氏嗜热栖热菌的完整序列。来自含线粒体生物的两个串联旁系同源基因(α-和β-微管蛋白)的氨基酸序列数据有力地解析了细胞黏菌的基部位置,在我们的系统发育分析中,细胞黏菌被指定为外类群。基于四个串联核基因(肌动蛋白、延伸因子-1α、α-微管蛋白和β-微管蛋白)的1525个氨基酸序列对53个操作分类单元(OTU)进行的系统发育分析仅在最大简约(MP)分析中可靠地解析了系统发育,这表明存在两个大型稳健的单系群(A组和B组)以及基部真核生物谱系(红藻、真正的黏菌和变形虫)。A组对应于后鞭毛生物(后生动物和真菌),而B组包括各种含初级和次级质体的谱系(绿色植物、灰胞藻、裸藻、不等鞭毛类和顶复门)、纤毛虫纲、动质体目和异叶足虫纲。红藻代表了B组的姐妹谱系。使用34个OTU(已知这四个基因的基本上整个氨基酸序列),MP、距离、四重奏困惑和两种类型的最大似然(ML)计算都有力地解析了B组的单系性以及红藻在真核生物中的基部位置。此外,对12个含线粒体OTU(包括梅氏嗜热栖热菌)的由12个核基因(不包括EF-2基因)组成的4639个氨基酸串联序列进行的系统发育分析解析了在由红藻和属于B组的真核生物组成的稳健单系群中绿色植物和红藻之间的稳健非姐妹关系。基于红藻在大型进化枝(B组加红藻)中的基部系统发育位置,提出了质体起源和进化的新情景。初级质体内共生可能在这个大型进化枝的共同祖先中发生过一次,随后初级质体在盘状嵴生物(裸藻、动质体目和异叶足虫纲)、不等鞭毛植物门和囊泡虫类(顶复门和纤毛虫纲)的祖先中丢失。此外,基于初级质体内共生的共同历史,为属于B组的光合和非光合生物以及红藻提出了“植物界”的新概念。植物界包括含初级质体的光合生物和可能含有在初级内共生中获得的蓝细菌起源基因的非光合真核生物。