Suppr超能文献

通过光漂白后荧光恢复定量测定小脑浦肯野神经元棘状树突中小白蛋白的扩散迁移率。

Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching.

作者信息

Schmidt Hartmut, Brown Edward B, Schwaller Beat, Eilers Jens

机构信息

Department of Neurophysiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt, Germany.

出版信息

Biophys J. 2003 Apr;84(4):2599-608. doi: 10.1016/S0006-3495(03)75065-6.

Abstract

Ca(2+)-binding proteins (CaBPs) represent key factors for the modulation of cellular Ca(2+) dynamics. Especially in thin extensions of nerve cells, Ca(2+) binding and buffered diffusion of Ca(2+) by CaBPs is assumed to effectively control the spatio-temporal extend of Ca(2+) signals. However, no quantitative data about the mobility of specific CaBPs in the neuronal cytosol are available. We quantified the diffusion of the endogenous CaPB parvalbumin (PV) in spiny dendrites of cerebellar Purkinje neurons with two-photon fluorescence recovery after photobleaching. Fluorescently labeled PV diffused readily between spines and dendrites with a median time constant of 49 ms (37-61 ms, interquartile range). Based on published data on spine geometry, this value corresponds to an apparent diffusion coefficient of 43 microm(2) s(-1) (34-56 microm(2) s(-1)). The absence of large or immobile binding partners for PV was confirmed in PV null-mutant mice. Our data validate the common but so far unproven assumption that PV is highly mobile in neurons and will facilitate simulations of neuronal Ca(2+) buffering. Our experimental approach represents a versatile tool for quantifying the mobility of proteins in neuronal dendrites.

摘要

钙离子结合蛋白(CaBPs)是调节细胞钙离子动态的关键因素。尤其在神经细胞的细突起中,CaBPs对钙离子的结合及缓冲扩散被认为可有效控制钙离子信号的时空范围。然而,目前尚无关于特定CaBPs在神经元胞质溶胶中迁移率的定量数据。我们利用光漂白后双光子荧光恢复技术,对小脑浦肯野神经元棘状树突中内源性CaPB小清蛋白(PV)的扩散进行了定量分析。荧光标记的PV在棘突和树突之间易于扩散,中位时间常数为49毫秒(四分位间距为37 - 61毫秒)。根据已发表的棘突几何结构数据,该值对应于43微米²/秒(34 - 56微米²/秒)的表观扩散系数。在PV基因敲除小鼠中证实不存在与PV结合的大的或固定的伴侣蛋白。我们的数据验证了一个常见但迄今未经证实的假设,即PV在神经元中具有高度迁移性,这将有助于对神经元钙离子缓冲进行模拟。我们的实验方法是一种用于量化蛋白质在神经元树突中迁移率的通用工具。

相似文献

2
Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones.
J Neurochem. 2007 Feb;100(3):727-35. doi: 10.1111/j.1471-4159.2006.04231.x.
3
Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k.
J Physiol. 2003 Aug 15;551(Pt 1):13-32. doi: 10.1113/jphysiol.2002.035824. Epub 2003 Jun 17.
4
Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 in Purkinje cells is regulated by calcium and actin filaments.
J Neurochem. 2010 Sep;114(6):1720-33. doi: 10.1111/j.1471-4159.2010.06885.x. Epub 2010 Aug 19.
5
The diffusional properties of dendrites depend on the density of dendritic spines.
Eur J Neurosci. 2011 Aug;34(4):561-8. doi: 10.1111/j.1460-9568.2011.07785.x. Epub 2011 Jul 19.
6
Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins.
J Physiol. 2007 Jun 1;581(Pt 2):619-29. doi: 10.1113/jphysiol.2007.127860. Epub 2007 Mar 8.
7
Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons.
Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5850-5. doi: 10.1073/pnas.0407855102. Epub 2005 Apr 4.
8
Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca²⁺-dependent interactions via its EF-hand 5 domain.
J Physiol. 2013 Aug 15;591(16):3887-99. doi: 10.1113/jphysiol.2013.256628. Epub 2013 Jun 3.
10
Dendritic calcium signaling in cerebellar Purkinje cell.
Neural Netw. 2013 Nov;47:11-7. doi: 10.1016/j.neunet.2012.08.001. Epub 2012 Sep 5.

引用本文的文献

2
Physiology of intracellular calcium buffering.
Physiol Rev. 2023 Oct 1;103(4):2767-2845. doi: 10.1152/physrev.00042.2022. Epub 2023 Jun 16.
3
Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft.
Biophys J. 2021 Dec 21;120(24):5575-5591. doi: 10.1016/j.bpj.2021.11.011. Epub 2021 Nov 11.
4
Cytosolic Ca Buffers Are Inherently Ca Signal Modulators.
Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a035543. doi: 10.1101/cshperspect.a035543.
5
Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule.
J Physiol. 2019 Aug;597(16):4387-4406. doi: 10.1113/JP278502. Epub 2019 Jul 26.
6
Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells.
Hear Res. 2019 May;376:11-21. doi: 10.1016/j.heares.2018.11.002. Epub 2018 Nov 16.
7
Variations in Ca Influx Can Alter Chelator-Based Estimates of Ca Channel-Synaptic Vesicle Coupling Distance.
J Neurosci. 2018 Apr 18;38(16):3971-3987. doi: 10.1523/JNEUROSCI.2061-17.2018. Epub 2018 Mar 21.
8
Padé Approximation of a Stationary Single-Channel Ca Nanodomain.
Biophys J. 2016 Nov 1;111(9):2062-2074. doi: 10.1016/j.bpj.2016.09.019.
9
Buffer mobility and the regulation of neuronal calcium domains.
Front Cell Neurosci. 2015 Feb 20;9:48. doi: 10.3389/fncel.2015.00048. eCollection 2015.

本文引用的文献

2
Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography.
J Neurosci. 2002 Mar 1;22(5):1648-67. doi: 10.1523/JNEUROSCI.22-05-01648.2002.
3
Rapid turnover of actin in dendritic spines and its regulation by activity.
Nat Neurosci. 2002 Mar;5(3):239-46. doi: 10.1038/nn811.
4
The life cycle of Ca(2+) ions in dendritic spines.
Neuron. 2002 Jan 31;33(3):439-52. doi: 10.1016/s0896-6273(02)00573-1.
6
Control of IP(3)-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin.
J Physiol. 2001 Aug 15;535(Pt 1):3-16. doi: 10.1111/j.1469-7793.2001.t01-2-00003.x.
8
Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+).
Biophys J. 2000 Dec;79(6):3009-18. doi: 10.1016/S0006-3495(00)76537-4.
9
Regulation of spine calcium dynamics by rapid spine motility.
J Neurosci. 2000 Nov 15;20(22):8262-8. doi: 10.1523/JNEUROSCI.20-22-08262.2000.
10
Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites.
J Physiol. 2000 Jun 1;525 Pt 2(Pt 2):419-32. doi: 10.1111/j.1469-7793.2000.t01-2-00419.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验