Casado-Pascual Jesús, Denk Claus, Gómez-Ordóñez José, Morillo Manuel, Hänggi Peter
Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 2):036109. doi: 10.1103/PhysRevE.67.036109. Epub 2003 Mar 18.
In the context of the phenomenon of stochastic resonance (SR), we study the correlation function, the signal-to-noise ratio (SNR), and the ratio of output over input SNR, i.e., the gain, which is associated to the nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These quantifiers for SR are evaluated using the techniques of linear response theory (LRT) beyond the usually employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT description that the gain can indeed not exceed unity. We implement an efficient algorithm, based on work by Greenside and Helfand (detailed in the Appendix), to integrate the driven Langevin equation over a wide range of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear regime which is characterized by weak noise and very slow multifrequency subthreshold input signals with a small duty cycle. This latter result is in agreement with recent analog simulation results by Gingl et al. [ICNF 2001, edited by G. Bosman (World Scientific, Singapore, 2002), pp. 545-548; Fluct. Noise Lett. 1, L181 (2001)].
在随机共振(SR)现象的背景下,我们研究了相关函数、信噪比(SNR)以及输出与输入信噪比之比,即增益,这些都与由时间周期力和高斯白噪声驱动的双稳系统的非线性响应相关。用于SR的这些量化指标是使用线性响应理论(LRT)技术评估的,超越了通常采用的双模近似方案。我们在这种扩展的LRT描述中通过分析证明增益确实不会超过1。我们基于Greenside和Helfand的工作(详细内容见附录)实现了一种高效算法,用于在广泛的参数值范围内对驱动的朗之万方程进行积分。针对在广泛参数值范围内从相应朗之万方程的数值解获得的结果,仔细检验了LRT的预测。我们还提出了一种精确的程序,用于评估相关函数的相干部分和非相干部分对SNR和增益的不同贡献。作为主要结果,我们表明对于亚阈值驱动,相关函数和SNR都可能与LRT的预测有很大偏差,但增益可能大于或小于1。特别是,我们发现在强非线性区域,增益可以超过1,该区域的特征是弱噪声和占空比小的非常缓慢的多频亚阈值输入信号。后一个结果与Gingl等人最近的模拟结果一致[ICNF 2001,由G. Bosman编辑(世界科学出版社,新加坡,2002年),第545 - 548页;《波动与噪声快报》1,L181(2001年)]。