Suppr超能文献

用于通过粪便样本估计动物群体中病原体流行率的贝叶斯方法。

Bayesian methods for estimating pathogen prevalence within groups of animals from faecal-pat sampling.

作者信息

Clough H E, Clancy D, O'Neill P D, French N P

机构信息

Department of Veterinary Clinical Sciences, University of Liverpool, Leahurst, Neston, CH64 7TE, South Wirral, UK.

出版信息

Prev Vet Med. 2003 May 15;58(3-4):145-69. doi: 10.1016/s0167-5877(03)00050-3.

Abstract

Pathogens such as Escherichia coli O157:H7 and Campylobacter spp. have been implicated in outbreaks of food poisoning in the UK and elsewhere. Domestic animals and wildlife are important reservoirs for both of these agents, and cross-contamination from faeces is believed to be responsible for many human outbreaks. Appropriate parameterisation of quantitative microbial-risk models requires representative data at all levels of the food chain. Our focus in this paper is on the early stages of the food chain-specifically, sampling issues which arise at the farm level. We estimated animal-pathogen prevalence from faecal-pat samples using a Bayesian method which reflected the uncertainties inherent in the animal-level prevalence estimates. (Note that prevalence here refers to the percentage of animals shedding the bacteria of interest). The method offers more flexibility than traditional, classical approaches: it allows the incorporation of prior belief, and permits the computation of a variety of distributional and numerical summaries, analogues of which often are not available through a classical framework. The Bayesian technique is illustrated with a number of examples reflecting the effects of a diversity of assumptions about the underlying processes. The technique appears to be both robust and flexible, and is useful when defecation rates in infected and uninfected groups are unequal, where population size is uncertain, and also where the microbiological-test sensitivity is imperfect. We also investigated the determination of the sample size necessary for determining animal-level prevalence from pat samples to within a pre-specified degree of accuracy.

摘要

诸如大肠杆菌O157:H7和弯曲杆菌属等病原体已被认为与英国及其他地区的食物中毒暴发有关。家畜和野生动物是这两种病原体的重要宿主,粪便的交叉污染被认为是许多人类食物中毒暴发的原因。定量微生物风险模型的适当参数化需要食物链各层面的代表性数据。本文我们关注的是食物链的早期阶段,特别是农场层面出现的抽样问题。我们使用贝叶斯方法从粪便样本估计动物病原体流行率,该方法反映了动物层面流行率估计中固有的不确定性。(注意,这里的流行率指的是排出感兴趣细菌的动物百分比)。该方法比传统的经典方法更具灵活性:它允许纳入先验信念,并允许计算各种分布和数值汇总,而通过经典框架通常无法获得类似的数据。通过一些反映对潜在过程的各种假设影响的例子来说明贝叶斯技术。该技术似乎既稳健又灵活,在感染组和未感染组的排便率不相等、种群大小不确定以及微生物检测灵敏度不完善的情况下都很有用。我们还研究了从粪便样本确定动物层面流行率至预先指定的准确度所需的样本量的确定方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验