Suppr超能文献

网络上的疾病演变:接触结构的作用。

Disease evolution on networks: the role of contact structure.

作者信息

Read Jonathan M, Keeling Matt J

机构信息

Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.

出版信息

Proc Biol Sci. 2003 Apr 7;270(1516):699-708. doi: 10.1098/rspb.2002.2305.

Abstract

Owing to their rapid reproductive rate and the severe penalties for reduced fitness, diseases are under immense evolutionary pressure. Understanding the evolutionary response of diseases in new situations has clear public-health consequences, given the changes in social and movement patterns over recent decades and the increased use of antibiotics. This paper investigates how a disease may adapt in response to the routes of transmission available between infected and susceptible individuals. The potential transmission routes are defined by a computer-generated contact network, which we describe as either local (highly clustered networks where connected individuals are likely to share common contacts) or global (unclustered networks with a high proportion of long-range connections). Evolution towards stable strategies operates through the gradual random mutation of disease traits (transmission rate and infectious period) whenever new infections occur. In contrast to mean-field models, the use of contact networks greatly constrains the evolutionary dynamics. In the local networks, high transmission rates are selected for, as there is intense competition for susceptible hosts between disease progeny. By contrast, global networks select for moderate transmission rates because direct competition between progeny is minimal and a premium is placed upon persistence. All networks show a very slow but steady rise in the infectious period.

摘要

由于疾病繁殖速度快且适应性降低会带来严重后果,它们面临着巨大的进化压力。鉴于近几十年来社会和流动模式的变化以及抗生素使用的增加,了解疾病在新情况下的进化反应具有明确的公共卫生意义。本文研究了疾病如何根据感染个体与易感个体之间可用的传播途径进行适应。潜在的传播途径由计算机生成的接触网络定义,我们将其描述为局部(高度聚集的网络,其中相连的个体可能共享共同的接触者)或全局(具有高比例远程连接的非聚集网络)。每当出现新感染时,朝着稳定策略的进化通过疾病特征(传播率和感染期)的逐渐随机突变来进行。与平均场模型不同,接触网络的使用极大地限制了进化动态。在局部网络中,由于疾病后代之间对易感宿主的激烈竞争,会选择高传播率。相比之下,全局网络选择中等传播率,因为后代之间的直接竞争最小,且更注重持久性。所有网络的感染期都呈现出非常缓慢但稳定的上升。

相似文献

1
Disease evolution on networks: the role of contact structure.
Proc Biol Sci. 2003 Apr 7;270(1516):699-708. doi: 10.1098/rspb.2002.2305.
2
Disease evolution across a range of spatio-temporal scales.
Theor Popul Biol. 2006 Sep;70(2):201-13. doi: 10.1016/j.tpb.2006.04.006. Epub 2006 May 5.
3
The transmission process: A combinatorial stochastic process for the evolution of transmission trees over networks.
J Theor Biol. 2016 Dec 7;410:137-170. doi: 10.1016/j.jtbi.2016.07.038. Epub 2016 Aug 9.
4
Evolutionary dynamics of infectious diseases in finite populations.
J Theor Biol. 2014 Nov 7;360:149-162. doi: 10.1016/j.jtbi.2014.06.039. Epub 2014 Jul 10.
5
Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk.
J Anim Ecol. 2013 Sep;82(5):976-86. doi: 10.1111/1365-2656.12088. Epub 2013 Jun 4.
6
The role of spatial population structure on the evolution of parasites with acquired immunity and demography.
J Theor Biol. 2013 May 7;324:21-31. doi: 10.1016/j.jtbi.2013.01.015. Epub 2013 Jan 31.
7
Imperfect vaccination: some epidemiological and evolutionary consequences.
Proc Biol Sci. 2003 Jun 7;270(1520):1129-36. doi: 10.1098/rspb.2003.2370.
8
Is network clustering detectable in transmission trees?
Viruses. 2011 Jun;3(6):659-76. doi: 10.3390/v3060659.
9
Connectivity interplays with age in shaping contagion over networks with vital dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022809. doi: 10.1103/PhysRevE.91.022809. Epub 2015 Feb 17.
10
Susceptible-infectious-recovered models revisited: from the individual level to the population level.
Math Biosci. 2014 Apr;250:26-40. doi: 10.1016/j.mbs.2014.02.001. Epub 2014 Feb 12.

引用本文的文献

2
The 2013 Chikungunya outbreak in the Caribbean was structured by the network of cultural relationships among islands.
R Soc Open Sci. 2023 Sep 13;10(9):230909. doi: 10.1098/rsos.230909. eCollection 2023 Sep.
3
The spread of infectious diseases from a physics perspective.
Biol Methods Protoc. 2023 Jun 20;8(1):bpad010. doi: 10.1093/biomethods/bpad010. eCollection 2023.
4
The illusion of personal health decisions for infectious disease management: disease spread in social contact networks.
R Soc Open Sci. 2023 Mar 29;10(3):221122. doi: 10.1098/rsos.221122. eCollection 2023 Mar.
5
Impacts of observation frequency on proximity contact data and modeled transmission dynamics.
PLoS Comput Biol. 2023 Feb 27;19(2):e1010917. doi: 10.1371/journal.pcbi.1010917. eCollection 2023 Feb.
7
Spatial correlations in geographical spreading of COVID-19 in the United States.
Sci Rep. 2022 Jan 13;12(1):699. doi: 10.1038/s41598-021-04653-2.
8
From bad to worse: airline boarding changes in response to COVID-19.
R Soc Open Sci. 2021 Apr 28;8(4):201019. doi: 10.1098/rsos.201019.
9
COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis.
Int J Environ Res Public Health. 2020 Oct 23;17(21):7744. doi: 10.3390/ijerph17217744.
10
Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes.
Parasitology. 2021 Mar;148(3):274-288. doi: 10.1017/S0031182020002048. Epub 2020 Oct 23.

本文引用的文献

1
The evolution of virulence: experimental evidence.
Parasitol Today. 1991 Nov;7(11):296-7. doi: 10.1016/0169-4758(91)90261-l.
3
Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs.
Sex Transm Infect. 2002 Apr;78 Suppl 1(Suppl 1):i159-63. doi: 10.1136/sti.78.suppl_1.i159.
4
A status-based approach to multiple strain dynamics.
J Math Biol. 2002 Feb;44(2):169-84. doi: 10.1007/s002850100120.
5
Statistical and dynamical study of disease propagation in a small world network.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056115. doi: 10.1103/PhysRevE.64.056115. Epub 2001 Oct 23.
6
The web of human sexual contacts.
Nature. 2001 Jun 21;411(6840):907-8. doi: 10.1038/35082140.
7
Epidemic dynamics and endemic states in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 2):066117. doi: 10.1103/PhysRevE.63.066117. Epub 2001 May 22.
8
Small world effect in an epidemiological model.
Phys Rev Lett. 2001 Mar 26;86(13):2909-12. doi: 10.1103/PhysRevLett.86.2909.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验