Suppr超能文献

转基因甘蓝型油菜(Brassica napus L.)与其野生近缘种:白菜型油菜(Brassica rapa L.)、野萝卜(Raphanus raphanistrum L.)、田芥菜(Sinapis arvensis L.)和法国芝麻菜(Erucastrum gallicum (Willd.) O.E. Schulz)之间的杂交。

Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz.

作者信息

Warwick S I, Simard M-J, Légère A, Beckie H J, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart C N

机构信息

Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, K.W. Neatby Building, Central Experimental Farm, Ottawa, Ontario, K1A OC6, Canada.

出版信息

Theor Appl Genet. 2003 Aug;107(3):528-39. doi: 10.1007/s00122-003-1278-0. Epub 2003 Apr 30.

Abstract

The frequency of gene flow from Brassica napus L. (canola) to four wild relatives, Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz, was assessed in greenhouse and/or field experiments, and actual rates measured in commercial fields in Canada. Various marker systems were used to detect hybrid individuals: herbicide resistance traits (HR), green fluorescent protein marker (GFP), species-specific amplified fragment length polymorphisms (AFLPs) and ploidy level. Hybridization between B. rapa and B. napus occurred in two field experiments (frequency approximately 7%) and in wild populations in commercial fields (approximately 13.6%). The higher frequency in commercial fields was most likely due to greater distance between B. rapa plants. All F(1) hybrids were morphologically similar to B. rapa, had B. napus- and B. rapa-specific AFLP markers and were triploid (AAC, 2n=29 chromosomes). They had reduced pollen viability (about 55%) and segregated for both self-incompatible and self-compatible individuals (the latter being a B. napus trait). In contrast, gene flow between R. raphanistrum and B. napus was very rare. A single R. raphanistrum x B. napus F1 hybrid was detected in 32,821 seedlings from the HR B. napus field experiment. The hybrid was morphologically similar to R. raphanistrum except for the presence of valves, a B. napus trait, in the distorted seed pods. It had a genomic structure consistent with the fusion of an unreduced gamete of R. raphanistrum and a reduced gamete of B. napus (RrRrAC, 2n=37), both B. napus- and R. raphanistrum-specific AFLP markers, and had <1% pollen viability. No hybrids were detected in the greenhouse experiments (1,534 seedlings), the GFP field experiment (4,059 seedlings) or in commercial fields in Québec and Alberta (22,114 seedlings). No S. arvensis or E. gallicum x B. napus hybrids were detected (42,828 and 21,841 seedlings, respectively) from commercial fields in Saskatchewan. These findings suggest that the probability of gene flow from transgenic B. napus to R. raphanistrum, S. arvensis or E. gallicum is very low (<2-5 x 10(-5)). However, transgenes can disperse in the environment via wild B. rapa in eastern Canada and possibly via commercial B. rapa volunteers in western Canada.

摘要

通过温室和/或田间试验评估了甘蓝型油菜(油菜籽)与四种野生近缘种——白菜型油菜、野萝卜、田芥菜和加那利芝麻菜之间的基因流频率,并测量了加拿大商业田地中的实际发生率。使用了各种标记系统来检测杂交个体:除草剂抗性性状(HR)、绿色荧光蛋白标记(GFP)、物种特异性扩增片段长度多态性(AFLP)和倍性水平。白菜型油菜和甘蓝型油菜之间的杂交发生在两项田间试验中(频率约为7%)以及商业田地的野生种群中(约为13.6%)。商业田地中频率较高很可能是由于白菜型油菜植株之间距离更远。所有F1杂种在形态上与白菜型油菜相似,具有甘蓝型油菜和白菜型油菜特异性AFLP标记,并且是三倍体(AAC,2n = 29条染色体)。它们的花粉活力降低(约55%),并且自交不亲和个体和自交亲和个体(后者是甘蓝型油菜的性状)都有分离。相比之下,野萝卜和甘蓝型油菜之间的基因流非常罕见。在来自HR甘蓝型油菜田间试验的32,821株幼苗中检测到一株野萝卜×甘蓝型油菜F1杂种。该杂种在形态上与野萝卜相似,只是在扭曲的豆荚中存在荚瓣,这是甘蓝型油菜的一个性状。它的基因组结构与未减数的野萝卜配子和减数的甘蓝型油菜配子融合一致(RrRrAC,2n = 37),具有甘蓝型油菜和野萝卜特异性AFLP标记,并且花粉活力<1%。在温室试验(1,534株幼苗)、GFP田间试验(4,059株幼苗)或魁北克和艾伯塔省的商业田地(22,114株幼苗)中未检测到杂种。在萨斯喀彻温省的商业田地中未检测到田芥菜或加那利芝麻菜×甘蓝型油菜杂种(分别为42,828株和

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验