Suppr超能文献

使用标准测量数据集确定基于蒙特卡罗方法的光子治疗计划中的入射电子注量。

Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.

作者信息

Keall Paul J, Siebers Jeffrey V, Libby Bruce, Mohan Radhe

机构信息

Department of Radiation Oncology, Virginia Commonwealth University, PO Box 980058, Richmond, Virginia 23298, USA.

出版信息

Med Phys. 2003 Apr;30(4):574-82. doi: 10.1118/1.1561623.

Abstract

An accurate dose calculation in phantom and patient geometries requires an accurate description of the radiation source. Errors in the radiation source description are propagated through the dose calculation. With the emergence of linear accelerators whose dosimetric characteristics are similar to within measurement uncertainty, the same radiation source description can be used as the input to dose calculation for treatment planning at many institutions with the same linear accelerator model. Our goal in the current research was to determine the initial electron fluence above the linear accelerator target for such an accelerator to allow a dose calculation in water to within 1% or 1 mm of the measured data supplied by the manufacturer. The method used for both the radiation source description and the patient transport was Monte Carlo. The linac geometry was input into the Monte Carlo code using the accelerator's manufacturer's specifications. Assumptions about the initial electron source above the target were made based on previous studies. The free parameters derived for the calculations were the mean energy and radial Gaussian width of the initial electron fluence and the target density. A combination of the free parameters yielded an initial electron fluence that, when transported through the linear accelerator and into the phantom, allowed a dose-calculation agreement to the experimental ion chamber data to within the specified criteria at both 6 and 18 MV nominal beam energies, except near the surface, particularly for the 18 MV beam. To save time during Monte Carlo treatment planning, the initial electron fluence was transported through part of the treatment head to a plane between the monitor chambers and the jaws and saved as phase-space files. These files are used for clinical Monte Carlo-based treatment planning and are freely available from the authors.

摘要

在模体和患者几何结构中进行精确的剂量计算需要对辐射源进行准确描述。辐射源描述中的误差会在剂量计算过程中传播。随着线性加速器的出现,其剂量学特性在测量不确定度范围内相似,对于许多使用相同线性加速器型号的机构,相同的辐射源描述可作为治疗计划剂量计算的输入。我们当前研究的目标是确定此类加速器线性加速器靶上方的初始电子注量,以便在水中进行剂量计算时,计算结果与制造商提供的测量数据相比,误差在1%以内或1毫米以内。用于辐射源描述和患者传输的方法是蒙特卡罗方法。利用加速器制造商的规格将直线加速器的几何结构输入到蒙特卡罗代码中。基于先前的研究对靶上方的初始电子源进行了假设。计算得出的自由参数是初始电子注量的平均能量和径向高斯宽度以及靶密度。自由参数的组合产生了一个初始电子注量,当该注量通过线性加速器传输到模体中时,在6和18 MV标称束能量下,剂量计算结果与实验电离室数据的符合程度在指定标准范围内,但在表面附近除外,特别是对于18 MV束。为了在蒙特卡罗治疗计划过程中节省时间,将初始电子注量通过治疗头的一部分传输到监测电离室和准直器之间的平面,并保存为相空间文件。这些文件用于基于临床蒙特卡罗的治疗计划,可从作者处免费获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验