Bian Hongjin, Reidhaar-Olson John F, Hammer Juergen
Section of Bioinformatics, Genetics and Genomics, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110-1199, USA.
Methods. 2003 Mar;29(3):299-309. doi: 10.1016/s1046-2023(02)00352-3.
An important step in the design of subunit vaccines is the identification of promiscuous T helper cell epitopes in sets of disease-specific gene products. Most of the epitope prediction models are based on HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. Here we describe a computer model, TEPITOPE, that enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA binding specificity. We show how to apply the TEPITOPE prediction model to identify T-cell epitopes, and provide examples of its successful application in the context of oncology, allergy, and infectious and autoimmune diseases.
亚单位疫苗设计中的一个重要步骤是在疾病特异性基因产物组中鉴定多反应性T辅助细胞表位。大多数表位预测模型基于HLA-II肽结合,这构成了表位自然选择中的一个主要瓶颈。在此,我们描述了一种计算机模型TEPITOPE,它能够系统地预测具有广泛HLA结合特异性的多反应性肽配体。我们展示了如何应用TEPITOPE预测模型来鉴定T细胞表位,并提供了其在肿瘤学、过敏、感染性疾病和自身免疫性疾病背景下成功应用的实例。