Suppr超能文献

低剪切力模拟微重力:一种影响细菌基因表达、生理及致病性的全局环境调节信号。

Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis.

作者信息

Nickerson Cheryl A, Ott C Mark, Wilson James W, Ramamurthy Rajee, LeBlanc Carly L, Höner zu Bentrup Kerstin, Hammond Timothy, Pierson Duane L

机构信息

Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, SL 38, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.

出版信息

J Microbiol Methods. 2003 Jul;54(1):1-11. doi: 10.1016/s0167-7012(03)00018-6.

Abstract

Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.

摘要

细菌栖息于各种各样令人印象深刻的生态位,并且必须不断适应变化的环境条件。虽然已经研究了许多环境信号对细菌的影响,但诸如剪切应力和重力等机械力的影响仅在有限程度上得到研究。然而,一些重要研究已经证明低剪切和/或微重力的环境信号在调节细菌基因表达、生理学和致病性方面起着关键作用[《化学综述》1(2001)第333页;《应用微生物学与生物技术》54(2000)第33页;《应用与环境微生物学》63(1997)第4090页;《工业微生物学杂志》18(1997)第22页;《当前微生物学》34(4)(1997)第199页;《应用微生物学与生物技术》56(3 - 4)(2001)第384页;《感染与免疫》68(6)(2000)第3147页;《细胞》109(7)(2002)第913页;《应用与环境微生物学》68(11)(2002)第5408页;《美国国家科学院院刊》99(21)(2002)第13807页]。细菌对这些与原核生物生命周期中遇到的信号相似的环境信号的反应,可能有助于深入了解细菌对生理相关条件的适应。本综述聚焦于当前以及未来潜在的研究趋势,旨在了解低剪切和微重力类似物的机械力对不同细菌参数的影响。此外,本综述还讨论了利用微重力技术生成生理相关的人体组织模型用于细菌致病性研究的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验