Suppr超能文献

[在中国人群中对SF-36量表进行标准化]

[Scaling the SF-36 in a Chinese population].

作者信息

Li J, Liu C, Li N, He T, Li B

机构信息

Department of Social Medicine, School of Public Health, WCUMS, Chengdu 610041, China.

出版信息

Hua Xi Yi Ke Da Xue Xue Bao. 2001 Mar;32(1):36-8, 47.

Abstract

OBJECTIVE

To facilitate the cross-cultural comparison, we employed the principles of fuzzy mathematics in scaling the SF-36 in a Chinese population.

METHODS

We stratified an urban population according to the age, sex, and occupation, and selected 650 people to participate in the study. A total of 646 valid questionnaires were returned. In the 8 domains of the SF-36, the interval estimation of the scores of different alternative answers of 6 domains which have more than 2 alternative answers were conducted.

RESULTS

The fuzzy degrees of most interval estimations were less than 0.5, except 4 estimations in the domain "physical functions". The ordering of the scores of 8 domains was more similar to the original assumption by our scaling criteria than by the US scaling criteria.

CONCLUSION

The scaling criteria set in this study is more suitable for use in Chinese population and we suggest that the alternative answers of the domain "physical functions" be simplified to "yes" and "no".

摘要

目的

为便于进行跨文化比较,我们运用模糊数学原理对中国人群的SF-36进行评分。

方法

我们根据年龄、性别和职业对城市人群进行分层,选取650人参与研究。共收回646份有效问卷。在SF-36的8个领域中,对6个有2个以上备选答案的领域的不同备选答案得分进行区间估计。

结果

除“生理功能”领域的4个估计外,大多数区间估计的模糊度均小于0.5。按照我们的评分标准,8个领域得分的排序比按照美国评分标准更接近原始假设。

结论

本研究设定的评分标准更适用于中国人群,我们建议将“生理功能”领域的备选答案简化为“是”和“否”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验