Suppr超能文献

Cell handling, membrane-binding properties, and membrane-penetration modeling approaches of pivampicillin and phthalimidomethylampicillin, two basic esters of ampicillin, in comparison with chloroquine and azithromycin.

作者信息

Chanteux Hugues, Paternotte Isabelle, Mingeot-Leclercq Marie-Paule, Brasseur Robert, Sonveaux E, Tulkens Paul M

机构信息

Unité de pharmacologie cellulaire et moléculaire, Université Catholique de Louvain, 73-70, avenue E. Mounier, 73, B-1200 Brussels, Belgium.

出版信息

Pharm Res. 2003 Apr;20(4):624-31. doi: 10.1023/a:1023203017300.

Abstract

PURPOSE

The purpose of this work was to examine and understand the cellular pharmacokinetics of two basic esters of ampicillin, pivaloyloxymethyl (PIVA) and phthalimidomethyl (PIMA), in comparison with lysosomotropic drugs (chloroquine, azithromycin).

METHODS

Cell culture studies (J774 macrophages) were undertaken to study uptake and release kinetics and to assess the influence of concentration, pH, proton ionophore (monensin), and MRP and P-gp inhibitors (probenecid, gemfibrozil, cyclosporin A, GF 120918). Equilibrium dialysis with liposomes were performed to directly asses the extent of drug binding to bilayers. Conformational analysis modeling of the drug penetration in bilayers was conducted to rationalize the experimental observations.

RESULTS

PIVA and PIMA showed properties in almost complete contrast with those of chloroquine and azithromycin, i.e., fast apparent accumulation and fast release at 4 degrees C as well as at 37 degrees C, saturation of uptake (apparent Kd 40 microM), no influence of monensin, MRP, or P-gp inhibitors; tight binding to liposomes (Kd approx. 40 microM); and sharp increase in calculated free energy when forced in the hydrophobic domain.

CONCLUSIONS

Although they are weak organic bases, PIVA and PIMA show none of the properties of lysosomotropic agents. We hypothesize that they remain locked onto the pericellular membrane and may never penetrate cells as such in significant amounts.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验