Kaufman Marcelle, Thomas René
Centre for Non-Linear Phenomena and Complex Systems, Université libre de Bruxelles, Campus Plaine CP 231, B1050 Brussels, Belgium.
C R Biol. 2003 Feb;326(2):205-14. doi: 10.1016/s1631-0691(03)00063-5.
The set of (feedback) circuits of a complex system is the machinery that allows the system to be aware of the levels of its crucial constituents. Circuits can be identified without ambiguity from the elements of the Jacobian matrix of the system. There are two types of circuits: positive if they comprise an even number of negative interactions, negative if this number is odd. The two types of circuits play deeply different roles: negative circuits are required for homeostasis, with or without oscillations, positive circuits are required for multistationarity, and hence, in biology, for differentiation and memory. In non-linear systems, a circuit can positive or negative (an 'ambiguous circuit', depending on the location in phase space. Full circuits are those circuits (or unions of disjoint circuits) that imply all the variables of the system. There is a tight relation between circuits and steady states. Each full circuit, if isolated, generates steady state(s) whose nature (eigenvalues) is determined by the structure of the circuit. Multistationarity requires the presence of at least two full circuits of opposite Eisenfeld signs, or else, an ambiguous circuit. We show how a significant part of the dynamical behaviour of a system can be predicted by a mere examination of its Jacobian matrix. We also show how extremely complex dynamics can be generated by such simple logical structures as a single (full and ambiguous) circuit.
复杂系统的(反馈)回路集合是使系统能够知晓其关键组成部分水平的机制。可以从系统的雅可比矩阵元素明确无误地识别回路。回路有两种类型:如果包含偶数个负相互作用,则为正回路;如果该数字为奇数,则为负回路。这两种类型的回路发挥着截然不同的作用:负回路对于稳态是必需的,无论有无振荡;正回路对于多稳态是必需的,因此在生物学中对于分化和记忆是必需的。在非线性系统中,一个回路可以是正的或负的(一个“模糊回路”,取决于在相空间中的位置)。完全回路是那些蕴含系统所有变量的回路(或不相交回路的并集)。回路与稳态之间存在紧密关系。每个完全回路,如果孤立出来,会产生稳态,其性质(特征值)由回路结构决定。多稳态需要至少存在两个具有相反艾森费尔德符号的完全回路,或者一个模糊回路。我们展示了如何仅通过检查系统的雅可比矩阵就能预测系统动力学行为的很大一部分。我们还展示了如此简单的逻辑结构(如单个(完全且模糊的)回路)如何能产生极其复杂的动力学。