Suppr超能文献

浅水湍流的相干结构:变形半径效应、气旋/反气旋不对称性与重力波生成

The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation.

作者信息

Polvani L. M., McWilliams J. C., Spall M. A., Ford R.

机构信息

Department of Applied Physics, Columbia University, New York, New York 10027National Center for Atmospheric Research, Boulder, Colorado 80307Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543D.A.M.T.P., University of Cambridge, Silver Street, Cambridge, CB3 9EW, England.

出版信息

Chaos. 1994 Jun;4(2):177-186. doi: 10.1063/1.166002.

Abstract

Over a large range of Rossby and Froude numbers, we investigate the dynamics of initially balanced decaying turbulence in a shallow rotating fluid layer. As in the case of incompressible two-dimensional decaying turbulence, coherent vortex structures spontaneously emerge from the initially random flow. However, owing to the presence of a free surface, a wealth of new phenomena appear in the shallow-water system. The upscale energy cascade, common to strongly rotating flows, is arrested by the presence of a finite Rossby deformation radius. Moreover, in contrast to near-geostrophic dynamics, a strong asymmetry is observed to develop as the Froude number is increased, leading to a clear dominance of anticyclonic vortices over cyclonic ones, even though no beta effect is present in the system. Finally, we observe gravity waves to be generated around the vortex structures, and, in the strongest cases, they appear in the form of shocks. We briefly discuss the relevance of this study to the vortices observed in Jupiter's atmosphere.

摘要

在大范围的罗斯比数和弗劳德数下,我们研究了浅旋转流体层中初始平衡的衰减湍流的动力学。与不可压缩二维衰减湍流的情况一样,相干涡旋结构从初始的随机流中自发出现。然而,由于存在自由表面,浅水系统中出现了大量新现象。强旋转流中常见的向上能量级串被有限的罗斯比变形半径的存在所阻止。此外,与近地转动力学相反,随着弗劳德数的增加,观察到强烈的不对称性发展,导致反气旋涡旋明显比气旋涡旋占主导地位,即使系统中不存在β效应。最后,我们观察到在涡旋结构周围产生了重力波,在最强的情况下,它们以激波的形式出现。我们简要讨论了这项研究与在木星大气中观测到的涡旋的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验