Suppr超能文献

莱姆尔-齐夫复杂度在神经放电分析中的应用。

Application of Lempel-Ziv complexity to the analysis of neural discharges.

作者信息

Szczepański J, Amigó J M, Wajnryb E, Sanchez-Vives M V

机构信息

Institute of Fundamental Technological Research, Warsaw, Poland.

出版信息

Network. 2003 May;14(2):335-50.

Abstract

Pattern matching is a simple method for studying the properties of information sources based on individual sequences (Wyner et al 1998 IEEE Trans. Inf. Theory 44 2045-56). In particular, the normalized Lempel-Ziv complexity (Lempel and Ziv 1976 IEEE Trans. Inf. Theory 22 75-88), which measures the rate of generation of new patterns along a sequence, is closely related to such important source properties as entropy and information compression ratio. We make use of this concept to characterize the responses of neurons of the primary visual cortex to different kinds of stimulus, including visual stimulation (sinusoidal drifting gratings) and intracellular current injections (sinusoidal and random currents), under two conditions (in vivo and in vitro preparations). Specifically, we digitize the neuronal discharges with several encoding techniques and employ the complexity curves of the resulting discrete signals as fingerprints of the stimuli ensembles. Our results show, for example, that if the neural discharges are encoded with a particular one-parameter method ('interspike time coding'), the normalized complexity remains constant within some classes of stimuli for a wide range of the parameter. Such constant values of the normalized complexity allow then the differentiation of the stimuli classes. With other encodings (e.g. 'bin coding'), the whole complexity curve is needed to achieve this goal. In any case, it turns out that the normalized complexity of the neural discharges in vivo are higher (and hence carry more information in the sense of Shannon) than in vitro for the same kind of stimulus.

摘要

模式匹配是一种基于单个序列研究信息源属性的简单方法(Wyner等人,1998年,《IEEE信息论汇刊》44卷,2045 - 2056页)。特别地,归一化的莱姆佩尔 - 齐夫复杂度(Lempel和Ziv,1976年,《IEEE信息论汇刊》22卷,75 - 88页),它衡量沿着序列产生新模式的速率,与诸如熵和信息压缩率等重要的源属性密切相关。我们利用这一概念来表征初级视觉皮层神经元在两种条件下(体内和体外制备)对不同类型刺激的反应,包括视觉刺激(正弦漂移光栅)和细胞内电流注入(正弦和随机电流)。具体而言,我们用几种编码技术将神经元放电数字化,并将所得离散信号的复杂度曲线用作刺激集合的指纹。例如,我们的结果表明,如果用特定的单参数方法(“峰峰时间编码”)对神经放电进行编码,在参数的广泛范围内,归一化复杂度在某些刺激类别内保持恒定。这种归一化复杂度的恒定值随后允许区分刺激类别。对于其他编码方式(例如“二进制编码”),则需要整个复杂度曲线来实现这一目标。无论如何,结果表明,对于同一种刺激,体内神经放电的归一化复杂度高于体外(因此在香农意义上携带更多信息)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验