Sesaki Hiromi, Southard Sheryl M, Yaffe Michael P, Jensen Robert E
Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Mol Biol Cell. 2003 Jun;14(6):2342-56. doi: 10.1091/mbc.e02-12-0788. Epub 2003 Feb 6.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.
在酿酒酵母中,线粒体融合至少需要两种外膜蛋白,即Fzo1p和Ugo1p。我们提供了直接证据,表明与发动蛋白相关的Mgm1蛋白对于线粒体融合也是必需的。与fzo1和ugo1突变体一样,MGM1基因被破坏的细胞含有大量线粒体片段,而不是野生型细胞中可见的少数长管状细胞器。通过破坏DNM1(线粒体分裂所需的基因)可挽救mgm1突变体中线粒体的碎片化。在由mgm1突变体交配形成的合子中,线粒体不融合且其内容物不混合。在Mgm1p的GTPase结构域中引入突变会完全阻断线粒体融合。此外,我们表明mgm1突变体无法融合其线粒体外膜和内膜。电子显微镜显示,尽管mgm1突变体表现出线粒体内膜嵴异常,但mgm1 dnm1双突变体可恢复正常的内膜结构。然而,mgm1 dnm1突变体在 mitochondrial fusion方面仍然存在缺陷,这表明无论线粒体的形态如何,线粒体融合都需要Mgm1p。最后,我们发现Mgm1p、Fzo1p和Ugo1p在线粒体外膜中发生物理相互作用。我们的结果提出了一种可能性,即Mgm1p通过与Fzo1p和Ugo1p的相互作用来调节线粒体外膜的融合。