Kwon Dong H, Dore M P, Kim J J, Kato M, Lee M, Wu J Y, Graham D Y
Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
Antimicrob Agents Chemother. 2003 Jul;47(7):2169-78. doi: 10.1128/AAC.47.7.2169-2178.2003.
Four clinical Helicobacter pylori isolates with high-level resistance to beta-lactams exhibited low- to moderate-level resistance to the structurally and functionally unrelated antibiotics ciprofloxacin, chloramphenicol, metronidazole, rifampin, and tetracycline. This pattern of multidrug resistance was transferable to susceptible H. pylori by natural transformation using naked genomic DNA from a clinical multidrug-resistant isolate. Acquisition of the multidrug resistance was also associated with a change in the genotype of the transformed multidrug-resistant H. pylori. DNA sequence analyses of the gene encoding penicillin binding protein 1A (PBP 1A) showed 36 nucleotide substitutions resulting in 10 amino acid changes in the C-terminal portion (the putative penicillin binding domain). Acquisition of beta-lactam resistance was consistently associated with transfer of a mosaic block containing the C-terminal portion of PBP 1A. No changes of genes gyrA, rpoB, rrn16S, rdxA, and frxA, and nine other genes (ftsI, hcpA, llm, lytB, mreB, mreC, pbp2, pbp4, and rodA1) encoding putative PBPs or involved in cell wall synthesis were found among the transformed resistant H. pylori. Antibiotic accumulations of chloramphenicol, penicillin, and tetracycline were all significantly decreased in the natural and transformed resistant H. pylori compared to what was seen with susceptible H. pylori. Natural transformation also resulted in the outer membrane protein profiles of the transformed resistant H. pylori becoming similar to that of the clinical resistant H. pylori isolates. Overall, these results demonstrate that high-level beta-lactam resistance associated with acquired multidrug resistance in clinical H. pylori is mediated by combination strategies including alterations of PBP 1A and decreased membrane permeability.
四株对β-内酰胺类抗生素具有高水平耐药性的临床幽门螺杆菌分离株,对结构和功能不相关的抗生素环丙沙星、氯霉素、甲硝唑、利福平和四环素表现出低至中等水平的耐药性。这种多药耐药模式可通过使用来自临床多药耐药分离株的裸露基因组DNA进行自然转化,转移至敏感的幽门螺杆菌。获得多药耐药性还与转化后的多药耐药幽门螺杆菌的基因型变化有关。对编码青霉素结合蛋白1A(PBP 1A)的基因进行DNA序列分析,结果显示有36个核苷酸替换,导致C末端部分(假定的青霉素结合域)有10个氨基酸变化。β-内酰胺耐药性的获得始终与包含PBP 1A C末端部分的嵌合块转移有关。在转化后的耐药幽门螺杆菌中,未发现gyrA、rpoB、rrn16S、rdxA和frxA基因以及其他九个编码假定PBP或参与细胞壁合成的基因(ftsI、hcpA、llm、lytB、mreB、mreC、pbp2、pbp4和rodA1)发生变化。与敏感的幽门螺杆菌相比,天然和转化后的耐药幽门螺杆菌中氯霉素、青霉素和四环素的抗生素积累均显著降低。自然转化还导致转化后的耐药幽门螺杆菌的外膜蛋白谱与临床耐药幽门螺杆菌分离株的外膜蛋白谱相似。总体而言,这些结果表明,临床幽门螺杆菌中与获得性多药耐药相关的高水平β-内酰胺耐药性是由包括PBP 1A改变和膜通透性降低在内的联合策略介导产生的。