Suppr超能文献

大肠杆菌电子传递催化剂DsbB的作用机制。

Mechanism of the electron transfer catalyst DsbB from Escherichia coli.

作者信息

Grauschopf Ulla, Fritz Andrea, Glockshuber Rudi

机构信息

Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland.

出版信息

EMBO J. 2003 Jul 15;22(14):3503-13. doi: 10.1093/emboj/cdg356.

Abstract

The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone. DsbB contains two catalytic disulfide bonds, Cys41-Cys44 and Cys104-Cys130. We show that DsbB directly oxidizes one molar equivalent of DsbA in the absence of ubiquinone via disulfide exchange with the 104-130 disulfide bond, with a rate constant of 2.7 x 10 M(-1) x s(-1). This reaction occurs although the 104-130 disulfide is less oxidizing than the catalytic disulfide bond of DsbA (E(o)' = -186 and -122 mV, respectively). This is because the 41-44 disulfide, which is only accessible to ubiquinone but not to DsbA, is the most oxidizing disulfide bond in a protein described so far, with a redox potential of -69 mV. Rapid intramolecular disulfide exchange in partially reduced DsbB converts the enzyme into a state in which Cys41 and Cys44 are reduced and thus accessible for reoxidation by ubiquinone. This demonstrates that the high catalytic efficiency of DsbB results from the extreme intrinsic oxidative force of the enzyme.

摘要

来自大肠杆菌的膜蛋白DsbB对于二硫键的形成至关重要,它催化周质二硫醇氧化酶DsbA被泛醌氧化。DsbB含有两个催化性二硫键,即Cys41-Cys44和Cys104-Cys130。我们发现,在没有泛醌的情况下,DsbB通过与104-130二硫键进行二硫键交换,以2.7×10 M(-1)×s(-1)的速率常数直接氧化一摩尔当量的DsbA。尽管104-130二硫键的氧化性比DsbA的催化性二硫键弱(E(o)'分别为-186和-122 mV),但该反应仍会发生。这是因为41-44二硫键仅能被泛醌而非DsbA接触到,它是迄今为止所描述蛋白质中氧化性最强的二硫键,其氧化还原电位为-69 mV。部分还原的DsbB中快速的分子内二硫键交换将酶转化为一种状态,其中Cys41和Cys44被还原,因此可被泛醌重新氧化。这表明DsbB的高催化效率源于该酶极强的内在氧化力。

相似文献

1
Mechanism of the electron transfer catalyst DsbB from Escherichia coli.
EMBO J. 2003 Jul 15;22(14):3503-13. doi: 10.1093/emboj/cdg356.
3
Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):287-92. doi: 10.1073/pnas.0507570103. Epub 2005 Dec 29.
6
Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation.
Cell. 2006 Nov 17;127(4):789-801. doi: 10.1016/j.cell.2006.10.034.
7
Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB.
FEBS Lett. 2008 Oct 15;582(23-24):3301-7. doi: 10.1016/j.febslet.2008.07.063. Epub 2008 Sep 5.
8
Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine.
Biochim Biophys Acta. 2008 Apr;1783(4):520-9. doi: 10.1016/j.bbamcr.2007.11.006. Epub 2007 Nov 26.
10
Role of the cytosolic loop of DsbB in catalytic turnover of the ubiquinone-DsbB complex.
Antioxid Redox Signal. 2006 May-Jun;8(5-6):743-52. doi: 10.1089/ars.2006.8.743.

引用本文的文献

1
Selective Binding of Small Molecules to Vibrio cholerae DsbA Offers a Starting Point for the Design of Novel Antibacterials.
ChemMedChem. 2022 Mar 18;17(6):e202100673. doi: 10.1002/cmdc.202100673. Epub 2022 Jan 27.
2
Spontaneous Phage Resistance in Avian Pathogenic .
Front Microbiol. 2021 Dec 13;12:782757. doi: 10.3389/fmicb.2021.782757. eCollection 2021.
3
Chemistry and Enzymology of Disulfide Cross-Linking in Proteins.
Chem Rev. 2018 Feb 14;118(3):1169-1198. doi: 10.1021/acs.chemrev.7b00123. Epub 2017 Jul 12.
5
Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways.
Antioxid Redox Signal. 2013 May 1;18(13):1623-41. doi: 10.1089/ars.2012.4973. Epub 2013 Jan 9.
6
Purification and characterization of Put1p from Saccharomyces cerevisiae.
Arch Biochem Biophys. 2010 Jun 15;498(2):136-42. doi: 10.1016/j.abb.2010.04.020. Epub 2010 May 5.
7
Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC.
J Biol Chem. 2009 Sep 4;284(36):23972-9. doi: 10.1074/jbc.M109.010199. Epub 2009 Jul 6.
8
De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC.
J Biol Chem. 2008 Nov 14;283(46):31469-76. doi: 10.1074/jbc.M803346200. Epub 2008 Sep 9.
9
Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility.
EMBO J. 2007 Aug 8;26(15):3509-20. doi: 10.1038/sj.emboj.7601799. Epub 2007 Jul 19.

本文引用的文献

1
Protein disulfide bond formation in prokaryotes.
Annu Rev Biochem. 2003;72:111-35. doi: 10.1146/annurev.biochem.72.121801.161459. Epub 2003 Jan 9.
2
Formation and transfer of disulphide bonds in living cells.
Nat Rev Mol Cell Biol. 2002 Nov;3(11):836-47. doi: 10.1038/nrm954.
3
DsbB catalyzes disulfide bond formation de novo.
J Biol Chem. 2002 Sep 6;277(36):32706-13. doi: 10.1074/jbc.M205433200. Epub 2002 Jun 18.
5
Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA.
EMBO J. 2002 May 15;21(10):2354-63. doi: 10.1093/emboj/21.10.2354.
6
Oxidative protein folding in bacteria.
Mol Microbiol. 2002 Apr;44(1):1-8. doi: 10.1046/j.1365-2958.2002.02851.x.
7
Identification of a segment of DsbB essential for its respiration-coupled oxidation.
Mol Microbiol. 2001 Jan;39(1):158-65. doi: 10.1046/j.1365-2958.2001.02229.x.
10
Disulfide bonds are generated by quinone reduction.
J Biol Chem. 2000 Aug 25;275(34):26082-8. doi: 10.1074/jbc.M003850200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验