Suppr超能文献

MASS:基于二级结构的多重结构比对。

MASS: multiple structural alignment by secondary structures.

作者信息

Dror O, Benyamini H, Nussinov R, Wolfson H

机构信息

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Bioinformatics. 2003;19 Suppl 1:i95-104. doi: 10.1093/bioinformatics/btg1012.

Abstract

We present a novel method for multiple alignment of protein structures and detection of structural motifs. To date, only a few methods are available for addressing this task. Most of them are based on a series of pairwise comparisons. In contrast, MASS (Multiple Alignment by Secondary Structures) considers all the given structures at the same time. Exploiting the secondary structure representation aids in filtering out noisy results and in making the method highly efficient and robust. MASS disregards the sequence order of the secondary structure elements. Thus, it can find non-sequential and even non-topological structural motifs. An important novel feature of MASS is subset alignment detection: It does not require that all the input molecules be aligned. Rather, MASS is capable of detecting structural motifs shared only by a subset of the molecules. Given its high efficiency and capability of detecting subset alignments, MASS is suitable for a broad range of challenging applications: It can handle large-scale protein ensembles (on the order of tens) that may be heterogeneous, noisy, topologically unrelated and contain structures of low resolution.

摘要

我们提出了一种用于蛋白质结构多重比对和结构基序检测的新方法。迄今为止,只有少数几种方法可用于解决此任务。其中大多数方法基于一系列成对比较。相比之下,MASS(基于二级结构的多重比对)同时考虑所有给定的结构。利用二级结构表示有助于过滤掉噪声结果,并使该方法高效且稳健。MASS忽略二级结构元件的序列顺序。因此,它可以找到非顺序甚至非拓扑的结构基序。MASS的一个重要新特性是子集比对检测:它不要求所有输入分子都进行比对。相反,MASS能够检测仅由分子子集共享的结构基序。鉴于其高效率和检测子集比对的能力,MASS适用于广泛的具有挑战性的应用:它可以处理可能是异质的、有噪声的、拓扑无关的且包含低分辨率结构的大规模蛋白质集合(数量级为数十个)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验