Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed Boris A
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA.
Phys Rev Lett. 2003 Jun 13;90(23):230401. doi: 10.1103/PhysRevLett.90.230401. Epub 2003 Jun 9.
An experimentally realizable scheme of periodic sign-changing modulation of the scattering length is proposed for Bose-Einstein condensates similar to dispersion-management schemes in fiber optics. Because of controlling the scattering length via the Feshbach resonance, the scheme is named Feshbach-resonance management. The modulational-instability analysis of the quasiuniform condensate driven by this scheme leads to an analog of the Kronig-Penney model. The ensuing stable localized structures are found. These include breathers, which oscillate between the Thomas-Fermi and Gaussian configuration, or may be similar to the 2-soliton state of the nonlinear Schrödinger equation, and a nearly static state ("odd soliton") with a nested dark soliton. An overall phase diagram for breathers is constructed, and full stability of the odd solitons is numerically established.
针对玻色 - 爱因斯坦凝聚体,提出了一种类似于光纤中的色散管理方案的、可通过实验实现的散射长度周期性符号变化调制方案。由于通过费什巴赫共振控制散射长度,该方案被命名为费什巴赫共振管理。由该方案驱动的准均匀凝聚体的调制不稳定性分析导致了类似于克勒尼希 - 彭尼模型的结果。随后发现了稳定的局域结构。这些结构包括在托马斯 - 费米和高斯构型之间振荡的呼吸子,或者可能类似于非线性薛定谔方程的双孤子态,以及带有嵌套暗孤子的近静态态(“奇孤子”)。构建了呼吸子的整体相图,并通过数值方法确定了奇孤子的完全稳定性。