Suppr超能文献

Alterations in nitric oxide-cGMP pathway in ventricular myocytes from obese leptin-deficient mice.

作者信息

Su Jun, Zhang Shengjun, Tse James, Scholz Peter M, Weiss Harvey R

机构信息

Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H2111-7. doi: 10.1152/ajpheart.00316.2003. Epub 2003 Jul 17.

Abstract

Leptin is a regulator of body weight and affects nitric oxide (NO) production. This study was designed to determine whether the myocardial NO-cGMP signal transduction system was altered in leptin-deficient obese mice. Contractile function, guanylyl cyclase activity, and cGMP-dependent protein phosphorylation were assessed in ventricular myocytes isolated from genetically obese (B6.V-Lepob) and age-matched lean (C57BL/6J) mice. There were no differences in baseline contraction between the lean and obese groups. After stimulation with the NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10-6 and 10-5 M) or a membrane-permeable cGMP analog 8-bromo-cGMP (8-Br-cGMP, 10(-6) and 10(-5) M), cell contractility was depressed. However, 8-Br-cGMP had significantly greater effects in obese mice than in lean controls with percent shortening reduced by 47 vs. 39% and maximal rate of shortening decreased by 46 vs. 36%. The negative effects of SNAP were similar between the two groups. Soluble guanylyl cyclase activity was not attenuated. This suggests that the activity of the cGMP-independent NO pathway may be enhanced in obesity. The phosphorylated protein profile of cGMP-dependent protein kinase showed that four proteins were more intensively phosphorylated in obese mice, which suggests an explanation for the enhanced effect of cGMP. These results indicate that the NO-cGMP signaling pathway was significantly altered in ventricular myocytes from the leptin-deficient obese mouse model.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验