von Bonsdorff-Nikander Anna, Karjalainen Milja, Rantanen Jukka, Christiansen Leena, Yliruusi Jouko
Department of Pharmacy, University of Helsinki, Helsinki, Finland.
Eur J Pharm Sci. 2003 Jul;19(4):173-9. doi: 10.1016/s0928-0987(03)00067-8.
Sterols have been shown to reduce plasma cholesterol by blocking the absorption of cholesterol from the gut. The physical properties of crystalline plant sterols limit their use in foods. A coarse-grained structure can be avoided by recrystallisation, a method that affords a reduction in the particle size. A previous work described how to produce a microcrystalline beta-sitosterol suspension. The present study deals with the stability of that suspension. Recrystallisation was carried out by two different methods; one based on rapid the other based on slow cooling, whereby six different compositions were made containing 5-30% of beta-sitosterol and secondly either 5 or 20% water was added. The particle size and habit were evaluated during a 16 weeks storage period (+4 or -19 degrees C) by way of optical microscopy. The crystal structure and degree of crystallinity was analysed by X-ray diffraction. Suspensions can, in most cases, be stored for 16 weeks without any changes to the size and habit. The only evidence of crystal growth came from a suspension with a low sterol concentration at a temperature of +4 degrees C. This is due to the dissolution-diffusion process which is affected by temperature and viscosity. Suspensions containing higher amounts of sterol remained stable, if stored at +4 or -19 degrees C, for 16 weeks. The suspensions included both hemihydrous and monohydrous beta-sitosterol crystals. Suspensions containing less sterol showed greater amounts of monohydrated crystals. This illustrates more water penetration into the crystals. A higher sterol concentration led to a larger number of smaller crystals creating reflections similar to hemihydrated crystals.