Suppr超能文献

Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin.

作者信息

Whitmire S E, Wolpert D, Markelz A G, Hillebrecht J R, Galan J, Birge R R

机构信息

Physics Department, University at Buffalo, State University of New York, Buffalo, New York, USA.

出版信息

Biophys J. 2003 Aug;85(2):1269-77. doi: 10.1016/S0006-3495(03)74562-7.

Abstract

Far infrared (FIR) spectral measurements of wild-type (WT) and D96N mutant bacteriorhodopsin thin films have been carried out using terahertz time domain spectroscopy as a function of hydration, temperature, and conformational state. The results are compared to calculated spectra generated via normal mode analyses using CHARMM. We find that the FIR absorbance is slowly increasing with frequency and without strong narrow features over the range of 2-60 cm(-1) and up to a resolution of 0.17 cm(-1). The broad absorption shifts in frequency with decreasing temperature as expected with a strongly anharmonic potential and in agreement with neutron inelastic scattering results. Decreasing hydration shifts the absorption to higher frequencies, possibly resulting from decreased coupling mediated by the interior water molecules. Ground-state FIR absorbances have nearly identical frequency dependence, with the mutant having less optical density than the WT. In the M state, the FIR absorbance of the WT increases whereas there is no change for D96N. These results represent the first measurement of FIR absorbance change as a function of conformational state.

摘要

相似文献

2
Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences.
Biophys J. 2008 Apr 15;94(8):3217-26. doi: 10.1529/biophysj.107.105163. Epub 2008 Jan 16.
3
Low-frequency dynamics of bacteriorhodopsin studied by terahertz time-domain spectroscopy.
Phys Chem Chem Phys. 2010 Sep 21;12(35):10255-62. doi: 10.1039/b927397b. Epub 2010 Jul 7.
4
Protein conformational changes in the bacteriorhodopsin photocycle.
J Mol Biol. 1999 Mar 19;287(1):145-61. doi: 10.1006/jmbi.1999.2589.
5
Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin.
J Mol Model. 2009 Aug;15(8):959-69. doi: 10.1007/s00894-008-0446-1. Epub 2009 Feb 3.
10
Structure and dynamics of bacteriorhodopsin. Comparison of simulation and experiment.
FEBS Lett. 1993 Aug 2;327(3):256-60. doi: 10.1016/0014-5793(93)80999-b.

引用本文的文献

1
Characteristic fingerprint spectrum of α-synuclein mutants on terahertz time-domain spectroscopy.
Biophys J. 2024 May 21;123(10):1264-1273. doi: 10.1016/j.bpj.2024.04.011. Epub 2024 Apr 16.
2
Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules.
Biophys Rev. 2023 Sep 7;15(5):833-849. doi: 10.1007/s12551-023-01131-z. eCollection 2023 Oct.
3
Metallodrug-protein interaction probed by synchrotron terahertz and neutron scattering spectroscopy.
Biophys J. 2021 Aug 3;120(15):3070-3078. doi: 10.1016/j.bpj.2021.06.012. Epub 2021 Jun 30.
4
Terahertz Spectroscopy Tracks Proteolysis by a Joint Analysis of Absorptance and Debye Model.
Biophys J. 2020 Dec 15;119(12):2469-2482. doi: 10.1016/j.bpj.2020.11.003. Epub 2020 Nov 13.
5
Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain.
Chem Rev. 2020 Apr 8;120(7):3233-3260. doi: 10.1021/acs.chemrev.9b00547. Epub 2020 Feb 19.
6
Terahertz Spectroscopy and Imaging: A Cutting-Edge Method for Diagnosing Digestive Cancers.
Materials (Basel). 2019 May 9;12(9):1519. doi: 10.3390/ma12091519.
7
Protein and RNA dynamical fingerprinting.
Nat Commun. 2019 Mar 4;10(1):1026. doi: 10.1038/s41467-019-08926-3.
8
Fingerprints of Conformational States of Human Hsp70 at Sub-THz Frequencies.
ACS Omega. 2016 Dec 31;1(6):1067-1074. doi: 10.1021/acsomega.6b00157. Epub 2016 Dec 1.
10
Moving in the Right Direction: Protein Vibrations Steering Function.
Biophys J. 2017 Mar 14;112(5):933-942. doi: 10.1016/j.bpj.2016.12.049.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Time-domain transillumination of biological tissues with terahertz pulses.
Opt Lett. 2000 Feb 15;25(4):242-4. doi: 10.1364/ol.25.000242.
3
Label-free probing of genes by time-domain terahertz sensing.
Phys Med Biol. 2002 Nov 7;47(21):3815-21. doi: 10.1088/0031-9155/47/21/320.
4
Excited-state lifetimes of far-infrared collective modes in proteins.
Phys Rev Lett. 2002 Jan 7;88(1):018102. doi: 10.1103/PhysRevLett.88.018102. Epub 2001 Dec 19.
5
Charge Motion during the Photocycle of Bacteriorhodopsin.
Biochemistry (Mosc). 2001 Nov;66(11):1234-48. doi: 10.1023/a:1013179101782.
6
Molecular mechanism of spectral tuning in sensory rhodopsin II.
Biochemistry. 2001 Nov 20;40(46):13906-14. doi: 10.1021/bi0116487.
7
Proton pumps: mechanism of action and applications.
Trends Biotechnol. 2001 Apr;19(4):140-4. doi: 10.1016/s0167-7799(01)01576-1.
8
How soft is a protein? A protein dynamics force constant measured by neutron scattering.
Science. 2000 Jun 2;288(5471):1604-7. doi: 10.1126/science.288.5471.1604.
9
Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution.
Science. 1999 Oct 8;286(5438):255-61. doi: 10.1126/science.286.5438.255.
10
Structure of bacteriorhodopsin at 1.55 A resolution.
J Mol Biol. 1999 Aug 27;291(4):899-911. doi: 10.1006/jmbi.1999.3027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验