Suppr超能文献

蛋白质中二价金属离子选择性与功能的实验与理论结合研究:应用于大肠杆菌核糖核酸酶H1

A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1.

作者信息

Babu C Satheesan, Dudev Todor, Casareno R, Cowan J A, Lim Carmay

机构信息

Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC.

出版信息

J Am Chem Soc. 2003 Aug 6;125(31):9318-28. doi: 10.1021/ja034956w.

Abstract

Structural and thermodynamic aspects of alkaline earth metal dication (Mg(2+), Ca(2+), Sr(2+), Ba(2+)) binding to E. coli ribonuclease H1 (RNase H1) have been investigated using both experimental and theoretical methods. The various metal-binding modes of the enzyme were explored using classical molecular dynamics simulations, and relative binding free energies were subsequently evaluated by free energy simulations. The trends in the free energies of model systems based on the simulation structures were subsequently verified using a combination of density functional theory and continuum dielectric methods. The calculations provide a physical basis for the experimental results and suggest plausible role(s) for the metal cation and the catalytically important acidic residues in protein function. Magnesium ion indirectly activates water attack of the phosphorus atom by freeing one of the active site carboxylate residues, D70, to act as a general base through its four first-shell water molecules, which prevent D70 from binding directly to Mg(2+). Calcium ion, on the other hand, inhibits enzyme activity by preventing D70 from acting as a general base through bidentate interactions with both carboxylate oxygen atoms of D70. These additional interactions to D70, in addition to the D10 and E48 monodentate interactions found for Mg(2+), enable Ca(2+) to bind tighter than the other divalent ions. However, a bare Mg(2+) ion with two or less water molecules in the first shell could bind directly to the three active-site carboxylates, in particular D70, thus inhibiting enzymatic activity. The present analyses and results could be generalized to other members of the RNase H family that possess the same structural fold and show similar metal-binding site and Mg(2+)-dependent activity.

摘要

已使用实验和理论方法研究了碱土金属二价阳离子(Mg(2+)、Ca(2+)、Sr(2+)、Ba(2+))与大肠杆菌核糖核酸酶H1(RNase H1)结合的结构和热力学方面。使用经典分子动力学模拟探索了该酶的各种金属结合模式,随后通过自由能模拟评估了相对结合自由能。基于模拟结构的模型系统自由能趋势随后使用密度泛函理论和连续介质介电方法相结合进行了验证。这些计算为实验结果提供了物理基础,并暗示了金属阳离子和蛋白质功能中催化重要的酸性残基可能的作用。镁离子通过释放活性位点羧酸残基之一D70,使其通过其四个第一壳层水分子作为通用碱,从而间接激活磷原子的水攻击,这四个水分子阻止D70直接与Mg(2+)结合。另一方面,钙离子通过与D70的两个羧酸氧原子进行双齿相互作用,阻止D70作为通用碱,从而抑制酶活性。除了发现Mg(2+)与D10和E48的单齿相互作用外,这些与D70的额外相互作用使Ca(2+)比其他二价离子结合更紧密。然而,第一壳层中有两个或更少水分子的裸Mg(2+)离子可以直接与三个活性位点羧酸盐结合,特别是D70,从而抑制酶活性。目前的分析和结果可以推广到具有相同结构折叠、显示相似金属结合位点和Mg(2+)依赖性活性的RNase H家族的其他成员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验