Suppr超能文献

有多少人能够操作基于脑电图的脑机接口(BCI)?

How many people are able to operate an EEG-based brain-computer interface (BCI)?

作者信息

Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G

机构信息

Guger Technologies OEG, A-8020 Graz, Austria.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):145-7. doi: 10.1109/TNSRE.2003.814481.

Abstract

Ninety-nine healthy people participated in a brain-computer interface (BCI) field study conducted at an exposition held in Graz, Austria. Each subject spent 20-30 min on a two-session BCI investigation. The first session consisted of 40 trials conducted without feedback. Then, a subject-specific classifier was set up to provide the subject with feedback, and the second session--40 trials in which the subject had to control a horizontal bar on a computer screen--was conducted. Subjects were instructed to imagine a right-hand movement or a foot movement after a cue stimulus depending on the direction of an arrow. Bipolar electrodes were mounted over the right-hand representation area and over the foot representation area. Classification results achieved with 1) an adaptive autoregressive model (39 subjects) and 2) band power estimation (60 subjects) are presented. Roughly 93% of the subjects were able to achieve classification accuracy above 60% after two sessions of training.

摘要

99名健康人参与了在奥地利格拉茨举办的一次博览会上进行的脑机接口(BCI)实地研究。每位受试者在为期两阶段的BCI调查中花费20至30分钟。第一阶段包括40次无反馈试验。然后,建立一个针对特定受试者的分类器为受试者提供反馈,并进行第二阶段——40次试验,受试者必须在电脑屏幕上控制一根水平条。受试者被指示在提示刺激后根据箭头方向想象右手运动或脚部运动。双极电极安装在右手代表区和脚部代表区上方。展示了使用1)自适应自回归模型(39名受试者)和2)带功率估计(60名受试者)获得的分类结果。经过两阶段训练后,约93%的受试者能够达到60%以上的分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验