Suppr超能文献

将激光测距扫描仪应用于图像引导肝脏手术:表面采集、配准和跟踪。

Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking.

作者信息

Cash David M, Sinha Tuhin K, Chapman William C, Terawaki Hiromi, Dawant Benoit M, Galloway Robert L, Miga Michael I

机构信息

Department of Biomedical Engineering, Vanderbilt University, Box 351631, Station B, Nashville, Tennessee 37235, USA.

出版信息

Med Phys. 2003 Jul;30(7):1671-82. doi: 10.1118/1.1578911.

Abstract

As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4 +/- 0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust method of acquiring anatomical surfaces intraoperatively.

摘要

随着图像引导手术程序日益多样化,将会出现更多基于点的基准标记无法精确定位用于配准且刚体假设不再成立的情况。因此,手术程序将更频繁地依赖解剖表面进行图像对齐,并需要术中几何数据来测量和补偿器官中的组织变形。在本文中,我们概述了可使用激光测距扫描仪在术中完成这些任务的方法。基于三角测量光学原理的激光测距扫描仪以非常快速的非接触方式获取密集的三维点数据。进行了体模研究,以测试通过在物理空间中的定位、配准和跟踪将距离扫描数据与传统图像引导手术数据模式相链接的能力。实验表明,该扫描仪能够将基于点的基准标记定位在0.2毫米以内,并且能够实现基于点和表面的配准,目标配准误差小于2.0毫米。使用距离扫描系统在物理空间中跟踪点产生的误差为1.4 +/- 0.8毫米。使用距离扫描仪进行了表面变形研究,以确定该设备是否能够获取足够的信息用于补偿算法。在表面变形研究中,距离扫描仪能够检测到与断层图像研究检测到的变形相当的表面形状变化。距离扫描仪的使用已获批准用于临床试验,并展示了首次术中距离扫描实验。在所有这些研究中,距离扫描数据中的主要误差源与表面在扫描仪视场内的位置和方向确定性相关。然而,这种系统误差可以校正,从而使距离扫描仪能够提供一种在术中获取解剖表面的快速、可靠方法。

相似文献

2
A new markerless patient-to-image registration method using a portable 3D scanner.
Med Phys. 2014 Oct;41(10):101910. doi: 10.1118/1.4895847.
4
Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements.
IEEE Trans Med Imaging. 2005 Nov;24(11):1479-91. doi: 10.1109/TMI.2005.855434.
5
Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery.
J Endourol. 2011 Mar;25(3):511-7. doi: 10.1089/end.2010.0249. Epub 2010 Dec 13.
7
A Surface-Based Spatial Registration Method Based on Sense Three-Dimensional Scanner.
J Craniofac Surg. 2017 Jan;28(1):157-160. doi: 10.1097/SCS.0000000000003283.
8
Cortical surface registration for image-guided neurosurgery using laser-range scanning.
IEEE Trans Med Imaging. 2003 Aug;22(8):973-85. doi: 10.1109/TMI.2003.815868.
9
Phantom validation of coregistration of PET and CT for image-guided radiotherapy.
Med Phys. 2004 May;31(5):1083-92. doi: 10.1118/1.1688041.
10
A robust brain deformation framework based on a finite element model in IGNS.
Int J Med Robot. 2008 Jun;4(2):146-57. doi: 10.1002/rcs.186.

引用本文的文献

2
Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.
J Med Imaging (Bellingham). 2017 Jul;4(3):035002. doi: 10.1117/1.JMI.4.3.035002. Epub 2017 Sep 12.
3
Improving Registration Robustness for Image-Guided Liver Surgery in a Novel Human-to-Phantom Data Framework.
IEEE Trans Med Imaging. 2017 Jul;36(7):1502-1510. doi: 10.1109/TMI.2017.2668842. Epub 2017 Feb 13.
5
A novel method for texture-mapping conoscopic surfaces for minimally invasive image-guided kidney surgery.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1515-26. doi: 10.1007/s11548-015-1339-2. Epub 2016 Jan 13.
6
A clinically applicable laser-based image-guided system for laparoscopic liver procedures.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1499-513. doi: 10.1007/s11548-015-1309-8. Epub 2015 Oct 17.
7
Generalized iterative most likely oriented-point (G-IMLOP) registration.
Int J Comput Assist Radiol Surg. 2015 Aug;10(8):1213-26. doi: 10.1007/s11548-015-1221-2. Epub 2015 May 23.
8
Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.
IEEE J Transl Eng Health Med. 2014 Apr 30;2. doi: 10.1109/JTEHM.2014.2327628.
9
Registration of 3D shapes under anisotropic scaling: Anisotropic-scaled iterative closest point algorithm.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):867-78. doi: 10.1007/s11548-015-1199-9. Epub 2015 Apr 11.

本文引用的文献

1
Laser triangulation: fundamental uncertainty in distance measurement.
Appl Opt. 1994 Mar 1;33(7):1306-14. doi: 10.1364/AO.33.001306.
2
Versatile intraoperative MRI in neurosurgery and radiology.
Acta Neurochir (Wien). 2002 Mar;144(3):271-8; discussion 278. doi: 10.1007/s007010200035.
3
Optimizing epilepsy surgery with intraoperative MR imaging.
Epilepsia. 2002 Apr;43(4):425-9. doi: 10.1046/j.1528-1157.2002.32401.x.
4
Laser surface scanning for patient registration in intracranial image-guided surgery.
Neurosurgery. 2002 Apr;50(4):797-801; discussion 802-3. doi: 10.1097/00006123-200204000-00021.
5
Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model.
IEEE Trans Med Imaging. 2001 Dec;20(12):1384-97. doi: 10.1109/42.974933.
6
Modeling of retraction and resection for intraoperative updating of images.
Neurosurgery. 2001 Jul;49(1):75-84; discussion 84-5. doi: 10.1097/00006123-200107000-00012.
7
Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept.
Neurosurgery. 2001 May;48(5):1082-9; discussion 1089-91. doi: 10.1097/00006123-200105000-00023.
8
Serial intraoperative magnetic resonance imaging of brain shift.
Neurosurgery. 2001 Apr;48(4):787-97; discussion 797-8. doi: 10.1097/00006123-200104000-00019.
9
SonoWand, an ultrasound-based neuronavigation system.
Neurosurgery. 2000 Dec;47(6):1373-9; discussion 1379-80.
10
Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.
Neurosurgery. 2000 Nov;47(5):1070-9; discussion 1079-80. doi: 10.1097/00006123-200011000-00008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验