Johnson Timothy D, Elashoff Robert M, Harkema Susan J
Department of Biostatistics, School of Public Health, Univeristy of Michigan, Ann Arbor, MI 48109, USA.
Biostatistics. 2003 Jan;4(1):143-64. doi: 10.1093/biostatistics/4.1.143.
Many facets of neuromuscular activation patterns and control can be assessed via electromyography and are important for understanding the control of locomotion. After spinal cord injury, muscle activation patterns can affect locomotor recovery. We present a novel application of reversible jump Markov chain Monte Carlo simulation to estimate activation patterns from electromyographic data. We assume the data to be a zero-mean, heteroscedastic process. The variance is explicitly modeled using a step function. The number and location of points of discontinuity, or change-points, in the step function, the inter-change-point variances, and the overall mean are jointly modeled along with the mean and variance from baseline data. The number of change-points is considered a nuisance parameter and is integrated out of the posterior distribution. Whereas current methods of detecting activation patterns are deterministic or provide only point estimates, ours provides distributional estimates of muscle activation. These estimates, in turn, are used to estimate physiologically relevant quantities such as muscle coactivity, total integrated energy, and average burst duration and to draw valid statistical inferences about these quantities.
神经肌肉激活模式和控制的许多方面可以通过肌电图进行评估,这对于理解运动控制很重要。脊髓损伤后,肌肉激活模式会影响运动恢复。我们提出了一种可逆跳跃马尔可夫链蒙特卡罗模拟的新应用,用于从肌电图数据估计激活模式。我们假设数据是一个零均值、异方差过程。方差使用阶跃函数进行显式建模。阶跃函数中不连续点或变化点的数量和位置、变化点间的方差以及总体均值与基线数据的均值和方差一起进行联合建模。变化点的数量被视为一个干扰参数,并从后验分布中积分出去。与当前检测激活模式的方法是确定性的或仅提供点估计不同,我们的方法提供肌肉激活的分布估计。这些估计反过来又用于估计生理相关量,如肌肉共同激活、总积分能量和平均爆发持续时间,并对这些量进行有效的统计推断。