Eger B T, Benkovic S J
Davey Laboratory, Department of Chemistry, Pennsylvania State University, University Park 16802.
Biochemistry. 1992 Sep 29;31(38):9227-36. doi: 10.1021/bi00153a016.
The minimal kinetic mechanism for misincorporation of a single nucleotide (dATP) into a short DNA primer/template (9/20-mer) by the Klenow fragment of DNA polymerase I [KF(exo+)] has been previously published [Kuchta, R. D., Benkovic, P., & Benkovic, S.J. (1988) Biochemistry 27, 6716-6725]. In this paper are presented refinements to this mechanism. Pre-steady-state measurements of correct nucleotide incorporation (dTTP) in the presence of a single incorrect nucleotide (dATP) with excess KF-(exo+) demonstrated that dATP binds to the KF(exo+)-9/20-mer complex in two steps preceding chemistry. Substitution of (alpha S)dATP for dATP yielded identical two-step binding kinetics, removing nucleotide binding as a cause of the elemental effect on the rate of misincorporation. Pyrophosphate release from the ternary species [KF'(exo+)-9A/20-mer-PPi] was found to occur following a rate-limiting conformational change, with this species partitioning equally to either nucleotide via internal pyrophosphorolysis or to misincorporated product. The rate of 9A/20-mer dissociation from the central ternary complex (KF'-9A/20-mer-PPi) was shown to be negligible relative to exonucleolytic editing. Pyrophosphorolysis of the misincorporated DNA product (9A/20-mer), in conjunction with measurement of the rate of dATP misincorporation, permitted determination of the overall equilibrium constant for dATP misincorporation and provided a value similar to that measured for correct incorporation. A step by step comparison of the polymerization catalyzed by the Klenow fragment for correct and incorrect nucleotide incorporation emphasizes that the major source of the enzyme's replicative fidelity arises from discrimination in the actual chemical step and from increased exonuclease activity on the ternary misincorporated product complex owing to its slower passage through the turnover sequence.
DNA聚合酶I的Klenow片段[KF(exo+)]将单个核苷酸(dATP)错误掺入短DNA引物/模板(9/20聚体)的最小动力学机制此前已发表[库奇塔,R.D.,本科维奇,P.,&本科维奇,S.J.(1988年)《生物化学》27,6716 - 6725]。本文介绍了对该机制的改进。在存在过量KF-(exo+)的情况下,对单个错误核苷酸(dATP)存在时正确核苷酸掺入(dTTP)的稳态前测量表明,dATP在化学反应之前分两步与KF(exo+)-9/20聚体复合物结合。用(αS)dATP替代dATP产生了相同的两步结合动力学,排除了核苷酸结合是对错误掺入速率产生元素效应的原因。发现三元物种[KF'(exo+)-9A/20聚体-PPi]中的焦磷酸释放是在限速构象变化之后发生的,该物种通过内部焦磷酸解或错误掺入产物等分到两种核苷酸中。相对于核酸外切酶编辑,9A/20聚体从中心三元复合物(KF'-9A/20聚体-PPi)解离的速率可忽略不计。错误掺入的DNA产物(9A/20聚体)的焦磷酸解,结合dATP错误掺入速率的测量,使得能够确定dATP错误掺入的总体平衡常数,并提供了一个与正确掺入测量值相似的值。对Klenow片段催化的正确和错误核苷酸掺入的聚合反应进行逐步比较强调,该酶复制保真度的主要来源在于实际化学步骤中的辨别以及由于三元错误掺入产物复合物在周转序列中通过较慢而导致的对其核酸外切酶活性增加。