Ogg S C, Poritz M A, Walter P
Department of Biochemistry and Biophysics, University of California, Medical School, San Francisco 94143-0448.
Mol Biol Cell. 1992 Aug;3(8):895-911. doi: 10.1091/mbc.3.8.895.
In mammalian cells, the signal recognition particle (SRP) receptor is required for the targeting of nascent secretory proteins to the endoplasmic reticulum (ER) membrane. We have identified the Saccharomyces cerevisiae homologue of the alpha-subunit of the SRP receptor (SR alpha) and characterized its function in vivo. S. cerevisiae SR alpha is a 69-kDa peripheral membrane protein that is 32% identical (54% chemically similar) to its mammalian homologue and, like mammalian SR alpha, is predicted to contain a GTP binding domain. Yeast cells that contain the SR alpha gene (SRP101) under control of the GAL1 promoter show impaired translocation of soluble and membrane proteins across the ER membrane after depletion of SR alpha. The degree of the translocation defect varies for different proteins. The defects are similar to those observed in SRP deficient cells. Disruption of the SRP101 gene results in an approximately sixfold reduction in the growth rate of the cells. Disruption of the gene encoding SRP RNA (SCR1) or both SCR1 and SRP101 resulted in an indistinguishable growth phenotype, indicating that SRP receptor and SRP function in the same pathway. Taken together, these results suggest that the components and the mechanism of the SRP-dependent protein targeting pathway are evolutionarily conserved yet not essential for cell growth. Surprisingly, cells that are grown for a prolonged time in the absence of SRP or SRP receptor no longer show pronounced protein translocation defects. This adaptation is a physiological process and is not due to the accumulation of a suppressor mutation. The degree of this adaptation is strain dependent.
在哺乳动物细胞中,信号识别颗粒(SRP)受体是新生分泌蛋白靶向内质网(ER)膜所必需的。我们已经鉴定出SRP受体α亚基(SRα)的酿酒酵母同源物,并对其体内功能进行了表征。酿酒酵母SRα是一种69 kDa的外周膜蛋白,与哺乳动物同源物有32%的同一性(54%的化学相似性),并且像哺乳动物SRα一样,预计含有一个GTP结合结构域。在GAL1启动子控制下含有SRα基因(SRP101)的酵母细胞,在SRα耗尽后,可溶性蛋白和膜蛋白跨ER膜的转运受损。不同蛋白质的转运缺陷程度有所不同。这些缺陷与在SRP缺陷细胞中观察到的缺陷相似。SRP101基因的破坏导致细胞生长速率降低约六倍。编码SRP RNA(SCR1)的基因或SCR1和SRP101两者的破坏导致无法区分的生长表型,表明SRP受体和SRP在同一途径中发挥作用。综上所述,这些结果表明,SRP依赖性蛋白靶向途径的组成成分和机制在进化上是保守的,但对细胞生长并非必不可少。令人惊讶的是,在没有SRP或SRP受体的情况下长时间生长的细胞不再表现出明显的蛋白转运缺陷。这种适应性是一个生理过程,并非由于抑制突变的积累。这种适应性的程度取决于菌株。