Jia Yuzhi, Qi Chao, Zhang Zhongyi, Hashimoto Takashi, Rao M Sambasiva, Huyghe Steven, Suzuki Yasuyuki, Van Veldhoven Paul P, Baes Myriam, Reddy Janardan K
Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
J Biol Chem. 2003 Nov 21;278(47):47232-9. doi: 10.1074/jbc.M306363200. Epub 2003 Sep 18.
Peroxisomal beta-oxidation system consists of peroxisome proliferator-activated receptor alpha (PPARalpha)-inducible pathway capable of catalyzing straight-chain acyl-CoAs and a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs. Disruption of the inducible beta-oxidation pathway in mice at the level of fatty acyl-CoA oxidase (AOX), the first and rate-limiting enzyme, results in spontaneous peroxisome proliferation and sustained activation of PPARalpha, leading to the development of liver tumors, whereas disruptions at the level of the second enzyme of this classical pathway or of the noninducible system had no such discernible effects. We now show that mice with complete inactivation of peroxisomal beta-oxidation at the level of the second enzyme, enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase (L-PBE) of the inducible pathway and D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase (D-PBE) of the noninducible pathway (L-PBE-/-D-PBE-/-), exhibit severe growth retardation and postnatal mortality with none surviving beyond weaning. L-PBE-/-D-PBE-/- mice that survived exceptionally beyond the age of 3 weeks exhibited overexpression of PPARalpha-regulated genes in liver, despite the absence of morphological evidence of hepatic peroxisome proliferation. These studies establish that peroxisome proliferation in rodent liver is highly correlatable with the induction mostly of the L- and D-PBE genes. We conclude that disruption of peroxisomal fatty acid beta-oxidation at the level of second enzyme in mice leads to the induction of many of the PPARalpha target genes independently of peroxisome proliferation in hepatocytes, raising the possibility that intermediate metabolites of very long-chain fatty acids and peroxisomal beta-oxidation act as ligands for PPARalpha.
过氧化物酶体β-氧化系统由过氧化物酶体增殖物激活受体α(PPARα)诱导途径和第二条非诱导途径组成,前者能够催化直链酰基辅酶A,后者催化2-甲基支链脂肪酰基辅酶A的氧化。在小鼠中,于脂肪酸酰基辅酶A氧化酶(AOX)水平破坏诱导性β-氧化途径,该酶是第一个也是限速酶,会导致过氧化物酶体自发增殖以及PPARα的持续激活,进而引发肝肿瘤的发生,而在这一经典途径的第二种酶或非诱导系统水平的破坏则没有这种明显的影响。我们现在表明,在诱导途径的第二种酶烯酰辅酶A水合酶/L-3-羟基酰基辅酶A脱氢酶(L-PBE)和非诱导途径的D-3-羟基酰基辅酶A脱水酶/D-3-羟基酰基辅酶A脱氢酶(D-PBE)水平上,过氧化物酶体β-氧化完全失活的小鼠(L-PBE-/-D-PBE-/-)表现出严重的生长发育迟缓以及出生后死亡,没有一只小鼠能存活到断奶以后。极少数存活超过3周龄的L-PBE-/-D-PBE-/-小鼠,尽管没有肝脏过氧化物酶体增殖的形态学证据,但肝脏中PPARα调控基因出现过表达。这些研究证实,啮齿动物肝脏中的过氧化物酶体增殖与L-和D-PBE基因的诱导高度相关。我们得出结论,在小鼠中于第二种酶水平破坏过氧化物酶体脂肪酸β-氧化会导致许多PPARα靶基因的诱导,而与肝细胞中的过氧化物酶体增殖无关,这增加了极长链脂肪酸和过氧化物酶体β-氧化的中间代谢产物作为PPARα配体的可能性。