Spirin Victor, Mirny Leonid A
Harvard-MIT Division of Health Sciences and Technology, 16-343, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12123-8. doi: 10.1073/pnas.2032324100. Epub 2003 Sep 29.
Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.
蛋白质、核酸和小分子在细胞中形成了一个密集的分子相互作用网络。分子是这个网络的节点,它们之间的相互作用是边。分子网络的架构能够揭示细胞组织和功能的重要原理,这与蛋白质结构能让我们了解蛋白质的功能和组织方式类似。分子网络的计算分析主要关注节点度[瓦格纳,A. 和费尔,D. A.(2001年)《英国皇家学会学报B辑》268卷,1803 - 1810页;郑,H.,通博尔,B.,阿尔伯特,R.,奥尔特瓦伊,Z. N. 和巴拉巴西,A. L.(2000年)《自然》407卷,651 - 654页]或度相关性[马斯洛夫,S. 和斯内彭,K.(2002年)《科学》296卷,910 - 913页],因此聚焦于这些网络的单/双体性质。在这里,通过分析蛋白质 - 蛋白质相互作用网络的多体结构,我们发现了分子模块,这些模块内部连接紧密,但与网络的其余部分连接稀疏。与实验数据和基因功能注释的比较显示出两种类型的模块:(i)蛋白质复合物(剪接机制、转录因子等)和(ii)动态功能单元(信号级联、细胞周期调控等)。从与随机图的比较中可以明显看出,所发现的模块具有高度的统计学显著性,并且对数据中的噪声具有鲁棒性。我们的结果为哈特韦尔等人提出的网络模块化原理[哈特韦尔,L. H.,霍普菲尔德,J. J.,莱布勒,S. 和默里,A. W.(1999年)《自然》402卷,C47 - C52页]提供了有力支持,表明所发现的模块构成了分子网络的“构建块”。