Suppr超能文献

Application of continuous-wave EPR spectral-spatial image reconstruction techniques for in vivo oxymetry: comparison of projection reconstruction and constant-time modalities.

作者信息

Matsumoto Ken-ichiro, Chandrika Baby, Lohman Joost A B, Mitchell James B, Krishna Murali C, Subramanian Sankaran

机构信息

Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Magn Reson Med. 2003 Oct;50(4):865-74. doi: 10.1002/mrm.10594.

Abstract

In this study we report the application of continuous-wave (CW) electron paramagnetic resonance (EPR) constant-time spectral spatial imaging (CTSSI) for in vivo oxymetry. 2D and 3D SSI studies of a phantom and live mice were carried out using projection reconstruction (PR) and constant-time (CT) modalities using a CW-EPR spectrometer/imager operating at 300 MHz frequency. Distortion of line shape, which is inherent in the PR method, was minimized by the CTSSI modality. It was also found that CTSSI offers improved noise reduction, restores a smoother line shape, and gives high convergence of estimated values. Spatial resolution was also improved by CTSSI, although fundamental spectral line-width broadening was observed. Although additional corrections are required for accurate estimations of spectral line width, CTSSI was able to demonstrate distinct differences in oxygen tension between a tumor and the normal legs of a C3H mouse. The PR method, on the other hand, was unable to make such a distinction unequivocally with the triarylmethyl spin probes. CTSSI promises to be a more suitable method for quantitative in vivo oxymetric studies using radiofrequency EPR imaging (EPRI).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验