Scharfstein Daniel O, Daniels Michael J, Robins James M
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
Biostatistics. 2003 Oct;4(4):495-512. doi: 10.1093/biostatistics/4.4.495.
In randomized studies with missing outcomes, non-identifiable assumptions are required to hold for valid data analysis. As a result, statisticians have been advocating the use of sensitivity analysis to evaluate the effect of varying assumptions on study conclusions. While this approach may be useful in assessing the sensitivity of treatment comparisons to missing data assumptions, it may be dissatisfying to some researchers/decision makers because a single summary is not provided. In this paper, we present a fully Bayesian methodology that allows the investigator to draw a 'single' conclusion by formally incorporating prior beliefs about non-identifiable, yet interpretable, selection bias parameters. Our Bayesian model provides robustness to prior specification of the distributional form of the continuous outcomes.
在存在缺失结果的随机研究中,为了进行有效的数据分析,需要满足不可识别的假设。因此,统计学家一直主张使用敏感性分析来评估不同假设对研究结论的影响。虽然这种方法在评估治疗比较对缺失数据假设的敏感性方面可能有用,但它可能会让一些研究人员/决策者不满意,因为没有提供单一的汇总结果。在本文中,我们提出了一种完全贝叶斯方法,该方法允许研究者通过正式纳入关于不可识别但可解释的选择偏倚参数的先验信念来得出“单一”结论。我们的贝叶斯模型对连续结果分布形式的先验设定具有稳健性。